[1]
Y. Wang, R.S. Mishra, Finite element simulation of selective superplastic forming of friction stir processed 7075 Al alloy. Materials Science and Engineering A 463 (2007) 245–248.
DOI: 10.1016/j.msea.2006.08.118
Google Scholar
[2]
B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha, M.A. Omar, Friction stir processing of commercial AZ31 magnesium alloy. J. Mater. Process. Tech. 191 (2007) 77-81.
DOI: 10.1016/j.jmatprotec.2007.03.045
Google Scholar
[3]
L. Carrino, A. Squillace, V. Paradiso, S. Ciliberto, M. Montuori, Superplastic Forming of Friction Stir Processed Magnesium Alloys for Aeronautical Applications: a Modeling Approach. Materials Science Forum Vol. 735, in press (2013).
DOI: 10.4028/www.scientific.net/msf.735.180
Google Scholar
[4]
M.K. Khraisheh, F.K. Abu-Farha, M.A. Nazzal, K.J. Weinmann, Combined Mechanics-Materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy. CIRP Ann.-Manuf. Techn. 55 (2006) 233-236.
DOI: 10.1016/s0007-8506(07)60405-3
Google Scholar
[5]
S. Franchitti, G. Giuliano, G. Palumbo, D. Sorgente, L. Tricarico, On the Optimisation of Superplastic Free Forming Test of an AZ31 Magnesium Alloy Sheet. Int J Mater Form (2008).
DOI: 10.1007/s12289-008-0203-0
Google Scholar
[6]
G.Y. Li, M.J. Tan, K.M. Liew, J. Mater. Process. Technol. 150 (2004) 76.
Google Scholar
[7]
M.K. Khraisheh, H.M. Zbib, C.H. Hamilton, A.E. Bayoumi, Constitutive modeling of superplastic deformation. Part I: Theory and experiments. Int. J. Plasticity 13 (1997) 143-164.
DOI: 10.1016/s0749-6419(97)00005-3
Google Scholar
[8]
N.V. Thuramalla, M.K. Khraisheh, Multiscale - Based optimization of superplastic forming in Transactions of the North American Manufacturing Research Institute, Charlotte NC 2004. 637-643.
Google Scholar
[9]
Mohammad A. Nazzal and Marwan K. Khraisheh, Impact of Selective Grain Refinement on Superplastic Deformation: Finite Element Analysis. Journal of Materials Engineering and Performance (2008) 17:163–167.
DOI: 10.1007/s11665-007-9180-6
Google Scholar
[10]
R.S. Mishra, Z.Y. Ma, Friction stir welding and processing Mater. Sci. Eng. 50 (2005) 1-78P.
Google Scholar
[11]
K.U. Kainer, Magnesium alloys and technology, Wiley-VCH GmbH, Weinheim, 2003.
Google Scholar
[12]
A.W. El-Morsy, K.I. Manabe, H. Nishimura, Superplastic forming of AZ31 magnesium alloy sheet into a rectangular pan Mater. Trans. 43 (2002) 2443-2448.
DOI: 10.2320/matertrans.43.2443
Google Scholar
[13]
A. Astarita, A. Scala, V. Paradiso, A. Squillace, M. Iodice, M. Indolfi, T. Monetta and F. Bellucci, Structural health monitoring of metal components: A new approach based on electrochemical measurements. Surf. Interface Anal. (2012).
DOI: 10.1002/sia.5195
Google Scholar
[14]
K. Geels, Metallographic and materialographic specimen preparation, light microscopy, image analysis, and hardness testing, ASTM International, West Conshohocken, PA, 2007.
DOI: 10.1520/mnl46-eb
Google Scholar
[15]
F.K. Abu-Farha, M.K. Khraisheh, Mechanical characteristics of superplastic deformation of AZ31Magnesium alloy J. Mater. Eng. Perform. 16 (2007) 192-199.
DOI: 10.1007/s11665-007-9031-5
Google Scholar
[16]
E.M. Taleff, L.G. Hector Jr, R. Verma, P.E. Krajewski, J.K. Chang, Material models for simulation of superplastic Mg alloy sheet forming J. Mater. Eng. Perform. 19 (2010) 488-494.
DOI: 10.1007/s11665-010-9612-6
Google Scholar
[17]
D.-t. Zhang, F. Xiong, W.-w. Zhang, C. Qiu, W. Zhang, Superplasticity of AZ31 magnesium alloy prepared by friction stir processing T. Nonferr. Metal. Soc. 21 (2011) 1911-1916.
DOI: 10.1016/s1003-6326(11)60949-7
Google Scholar
[18]
P. Wang, L.H. Wu, S.K. Guan, Effect of initial microstructure on superplastic deformation of AZ70 magnesium alloy, T. Nonferr. Metal. Soc. 20 (2010) s527-s532.
DOI: 10.1016/s1003-6326(10)60532-8
Google Scholar