Combining Micro-Nanotechnology with Atomic Spin Devices

Article Preview

Abstract:

In recent year, the sensitivities of atomic spin devices are improved greatly with the realization of spin exchange relaxation free (SERF) regime. Usually the SERF regime is realized using orthogonal beams scheme, i.e. one pump beam to polarize the atoms and the other orthogonal probe beam to measure the polarization. Due to the requirement of four optical windows for the atomic vapor cell, the orthogonal beams scheme has difficulties for micro fabrication. In this paper, we research a new scheme for SERF realization using only one beam, which facilitates the micro fabrication greatly. Furthermore, the fabrication processes of the MEMS atomic vapor cell with two out-of-plane optical windows are designed and performed. In the end, the possibility of increasing the relaxation time by nanotechnology is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

1088-1091

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.B. Dang, A.C. Maloof, M.V. Romalis, Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer, Appl. Phys. Lett., 97 (2010) 151110.

DOI: 10.1063/1.3491215

Google Scholar

[2] T.W. Kornack, A test of CPT and Lorentz symmetry using K-3He co-magnetometer, Ph.D, Department of Physics, Princeton Univeristy, (2005)

Google Scholar

[3] J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation, Phys. Rev. Lett., 89 (2002) 130801.

DOI: 10.1103/physrevlett.89.130801

Google Scholar

[4] I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer, Nature, 422 (2003) 596-599.

DOI: 10.1038/nature01484

Google Scholar

[5] M.V. Romalis, H.B. Dang, Atomic magnetometers for materials characterization, Materials Today, 14 (2011) 258-262.

DOI: 10.1016/s1369-7021(11)70140-7

Google Scholar

[6] T.W. Kornack, R.K. Ghosh, M.V. Romalis, Nuclear spin gyroscope based on an atomic comagnetometer, Phys. Rev. Lett., 95 (2005) 230801.230801-230801.230804.

DOI: 10.1103/physrevlett.95.230801

Google Scholar

[7] M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, Spin-exchange-relaxation-free magnetometry with Cs vapor, Phys. Rev. A, 77 (2008) 033408.

DOI: 10.1103/physreva.77.033408

Google Scholar

[8] V. Shah, S. Knappe, P.D.D. Schwindt, J. Kitching, Subpicotesla atomic magnetometry with a microfabricated vapour cell, Nature Photonics, 1 (2007) 649-652.

DOI: 10.1038/nphoton.2007.201

Google Scholar

[9] W.C. Griffith, S. Knappe, J. Kitching, Femtotesla atomic magnetometry in a microfabricated vapor cell, Optics Express, 18 (2010) 27167-27172.

DOI: 10.1364/oe.18.027167

Google Scholar

[10] T.S. Wang, N. Chen, J.F. Xiang, Journal of America Chemical Society, 131 (2009) 16646-16647.

Google Scholar

[11] I.M. Savukov, M.V. Romalis, Effects of spin-exchange collisions in a high-density alkali-metal vapor in low magnetic fields, Phys. Rev. A, 71 (2005) 023405.

DOI: 10.1103/physreva.71.023405

Google Scholar