Single Phase Pyrite Synthesized via Hydrothermal Method

Article Preview

Abstract:

Single phase pyrite has been successfully prepared via the reaction of FeSO4·7H2O, S and Na2S·9H2O using hydrothermal method. The X-ray powder diffraction measurements confirm the formation of iron disulfides in the pH range of 1-12. Marcasite is formed at pH<4, the marcasite contents in the final products increasing with decreasing pH; when the pH is higher than 4, the final product is single phase pyrite. Scanning electron microscope (SEM) images reveal that both the pH and temperatures have significant effects on the size and morphology of final products. Pyrite micro-nanocubes of 200-400nm in length were synthesized at pH=9. Detailed information of the experimental results are analyzed in the results and discussion part.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

136-140

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Patrick J.Masset, Ronald A.Guidotti, Thermal activated("thermal")battery technology Part IIIa:FeS2 cathode material, Journal of Power Sources .177(2008)595–609

DOI: 10.1016/j.jpowsour.2007.11.017

Google Scholar

[2] A.Ennaoui, S.Fiecher, W.Jaegermann et al, Photoelectrochemistry of Highly Quantum Efficient Single-Crystalline n-FeS2(Pyrite), Carbon Fiber Microelectrodes.133(1986)97-106

DOI: 10.1149/1.2108553

Google Scholar

[3] Yang Shao-Horn, Quinn C.Horn, Chemical, structural and electrochemical comparison of natural and synthetic FeS2 pyrite in lithium cells, Electrochimica Acta. 46(2001)2613–2621

DOI: 10.1016/s0013-4686(01)00465-0

Google Scholar

[4] I.Uhlig,R.Szargan H.W. Nesbitt et al, Surface states and reactivity of pyrite and marcasite, Applied Surface Science. 179(2001)222-229

DOI: 10.1016/s0169-4332(01)00283-5

Google Scholar

[5] George W.Luther, Pyrite synthesis via polysulfide compounds, Geochimica et Cosmochimica Acta. 55(1991)2839-2849

DOI: 10.1016/0016-7037(91)90449-f

Google Scholar

[6] X.F. Qian X.M. Zhang,C.Wang, The preparation and phase transition of nanocrystalline iron sulfides via toluene-thermal process, Materials Science and Engineering B. 64(1999)170–173

DOI: 10.1016/s0921-5107(99)00145-2

Google Scholar

[7] Gujie Qian, Joel Brugger, William M.Skinner et a, An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300°C, Geochimica et Cosmochimica Acta. 74(2010)5610–5630

DOI: 10.1016/j.gca.2010.06.035

Google Scholar

[8] R.Wu, Y.F. Zheng, X.G. Zhang et al, Hydrothermal synthesis and crystal structure of pyrite, Journal of Crystal Growth.266(2004)523–527

DOI: 10.1016/j.jcrysgro.2004.02.020

Google Scholar

[9] H.Duan, Y.F. Zheng, Y.Z. Dong et al, Pyrite(FeS2) films prepared via sol–gel hydrothermal method combined with electrophoretic deposition (EPD), Materials Research Bulletin 39(2004) 1861–1868

DOI: 10.1016/j.materresbull.2004.06.012

Google Scholar

[10] Andrzel Anderko, Patrick J ShulerA, Computational approach to predicting the formation of iron sulfide species using stability diagrams, Computers &Geosciences. 23(1997)647-658.

DOI: 10.1016/s0098-3004(97)00038-1

Google Scholar

[11] David Rickard, Chemistry of Iron Sulfides, George W.Luther III, Chem.Rev. 107 (2007)514-562

DOI: 10.1021/cr0503658

Google Scholar

[12] David Rickard, The solubility of FeS, Geochimica et Cosmochimica Acta.70(2006)5779-5789

DOI: 10.1016/j.gca.2006.02.029

Google Scholar

[13] Hiroaki OhfujiT, David Rickard, Experimental syntheses of framboids—a review, Earth-Science Reviews.71(2005)147–170

DOI: 10.1016/j.earscirev.2005.02.001

Google Scholar