Color Filters Based on the Subwavelength Triangular-Lattice Cylinder Arrays in Metal-Dielectric Films

Article Preview

Abstract:

Abstract: Color filter incorporating a subwavelength triangular-lattice cylinder arrays in metal-dielectric films on quartz substrate was proposed. The device consists of a quartz substrate, a triangular-lattice cylinder arrays in both dielectric layer of ZnS and a metallic layer of aluminum (Al). The broadband transmission characteristic of the proposed device in the visible wavelength range was investigated in detail by the rigorous coupled wave analysis (RCWA). Specially by discussing the effects of the structure parameters to the resonant wavelength, typical optimized structure parameters are obtained, in which more than 74.6% peak transmission efficiency with FWHM of ~ 80 nm were simultaneously achieved for the tricolor filters. The simulation results show that the peak transmission efficiency (PET) increases more than 17% with lower color cross-talk compared to the previous color filters.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 562-565)

Pages:

737-743

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Catrysse, B. Wandell, and A. E. Gamal, "An integrated color pixel in 0.18μm CMOS technology," in 2001 International Electron Devices Meeting-Technical Digest (IEEE, 2001), pp.559-562.

DOI: 10.1109/iedm.2001.979568

Google Scholar

[2] G. D. Sharp, K. M. Johnson, and D. Doroski, "Continuously tunable smectic A(*) liquid-crystal color filter," Opt. Lett. 15(10), 523-525(1990).

DOI: 10.1364/ol.15.000523

Google Scholar

[3] Y. Cho, Y. K. Choi, and S. H. Sohn, "Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter," Appl. Phys. Lett. 89(5), 051102 (2006).

DOI: 10.1063/1.2244042

Google Scholar

[4] Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates," IEEE Photon. Technol. Lett. 18(20), 2126-2128 (2006).

DOI: 10.1109/lpt.2006.883208

Google Scholar

[5] Y. T. Yoon, C. H. Park, S. S. Lee, "Highly efficient color filter incorporating a thin metal-dielectric resonant structure," Appl. Phys. Express 5 (2012) 022501.

DOI: 10.1143/apex.5.022501

Google Scholar

[6] H. S. Lee, Y. T. Yoon, S. S. Lee, S. H. Kim, and K. D. Lee, "Color filter based on a subwavelength patterned metal grating," Opt. Express. 15(23), 15457-15463 (2007).

DOI: 10.1364/oe.15.015457

Google Scholar

[7] Q. Chen, David R. S. Cumming, " High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films, " Opt. Express. 18(13), 14056-14062 (2010).

DOI: 10.1364/oe.18.014056

Google Scholar

[8] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119(1983)

DOI: 10.1364/ao.22.001099

Google Scholar

[9] M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3 1780-1787 (1986).

DOI: 10.1364/josaa.3.001780

Google Scholar

[10] E. B. Grann, M. G. Moharam, and D. A. Pommet, "Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," J. Opt. Soc. Am. A 11 2695-2703 (1994).

DOI: 10.1364/josaa.11.002695

Google Scholar

[11] M. G. Moharam and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. A 73 1105-1112 (1983).

DOI: 10.1364/josa.73.001105

Google Scholar

[12] R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61(9), 1022-1024 (1992).

Google Scholar

[13] S. S. Wang, and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32(14), 2606-2613 (1993).

DOI: 10.1364/ao.32.002606

Google Scholar

[14] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, "Normal-incidence guide resonant grating filters: design and experimental demonstration," Opt. Lett. 23(9), 700-702 (1998).

DOI: 10.1364/ol.23.000700

Google Scholar

[15] Y. Ding, and R. Magnusson, "Resonant leaky-mode spectral-band engineering and device application," Opt. Epress. 12(23), 5661-5674 (2004).

DOI: 10.1364/opex.12.005661

Google Scholar