Ferroelectric Properties and Domain Clamping of (Bi0.5Na0.5)TiO3 Single Crystals Grown under High-Oxygen-Pressure Atmosphere

Article Preview

Abstract:

Top-seeded solution growth method under high-oxygen-pressure atmosphere has been developed for obtaining high-performance and large-sized single crystals of ferroelectric (Bi0.5Na0.5)TiO3 (BNT). Crystals grown at 1000 °C at a Po2 of 0.9 MPa exhibited a well-saturated hysteresis with a remanent polarization of 34 μC/cm2 and a coercive field of 22 kV/cm along <100>cubic. The spontaneous polarization of BNT along <111>cubic is estimated to be 59 μC/cm2 from the measured polarization properties along <100>cubic of the crystals obtained. Domain observations using piezoresponse force microscopy revealed that the degraded performance of BNT crystals grown at a low Po2 is attributed to unswitched 71° domains remaining even after applying a high electric field to the crystals .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-33

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, and N.N. Krainik: Sov. Phys. Solid State Vol. 2 (1961), p.2651.

Google Scholar

[2] T. Takenaka and K. Sakata: Ferroelectrics Vol. 95 (1989), p.153.

Google Scholar

[3] T. Takenaka, K. Maruyama, and K. Sakata: Jpn. J. Appl. Phys. Vol. 30 (1991), p.2236.

Google Scholar

[4] A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki: Jpn. J. Appl. Phys. Vol. 38 (1999), p.5564.

Google Scholar

[5] A. Morishita, Y. Kitanaka, M. Izumi, Y. Noguchi, and M. Miyayama: Key Eng. Mater. Vol. 445 (2010), p.7.

Google Scholar

[6] H. Onozuka, Y. Kitanaka, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. Vol. 50 (2011), Art. No. 09NE07.

Google Scholar

[7] H. Nagata: J. Ceram. Soc. Jpn. Vol. 116 (2008), p.271.

Google Scholar

[8] U. Robels and G. Arlt: J. Appl. Phys. Vol. 73 (1993), p.3454.

Google Scholar

[9] M. Dawber and J.F. Scott: Appl. Phys. Lett. Vol. 76 (2000), p.1060.

Google Scholar

[10] L. He and D. Vanderbilt: Phys. Rev. B Vol. 68 (2003), Art. No. 134103.

Google Scholar

[11] K. Yamamoto, M. Suzuki, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. Vol. 47 (2008), p.7623.

Google Scholar

[12] S. -E. Park and T.R. Shrout: J. Appl. Phys. Vol. 82 (1997), p.1804.

Google Scholar

[13] L.M. Eng: Nanotechnology Vol. 10 (1999), p.405.

Google Scholar

[14] S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S. -E. Park, L.E. Cross, and T.R. Shrout: Jpn. J. Appl. Phys. vol. 38 (1999), p.5505.

DOI: 10.1143/jjap.38.5505

Google Scholar

[15] Y. Kitanaka, Y. Noguchi, and M. Miyayama: Phys. Rev. B Vol. 81 (2010), Art. No. 094114.

Google Scholar

[16] Y. Kitanaka, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. Vol. 49 (2010), Art. No. 09MC06.

Google Scholar

[17] Y. Kitanaka, H. Onozuka, Y. Noguchi, and M. Miyayama: Ferroelectrics Vol. 414 (2011), p.24.

Google Scholar

[18] M. Suzuki, A. Morishita, Y. Kitanaka, Y. Noguchi, and M. Miyayama: Jpn. J. Appl. Phys. Vol. 49 (2010), Art. No. 09MD09.

Google Scholar

[19] S.K. Streiffer, C.B. Parker, A.E. Romanov, M.J. Lefevre, L. Zhao, J.S. Speck, W. Pompe, C.M. Foster, and G.R. Bai: J. Appl. Phys. Vol. 83 (1998), p.2742.

Google Scholar