Grain Size Dependence of the Microstructure and Dielectric Properties of Potassium Niobate-Barium Titanate Ceramics

Article Preview

Abstract:

In this study, 0.8 KNbO3 (KN) -0.2 BaTiO3 (BT) ceramics were prepared using KN powder with the diameter of 100 nm and BT powders with the diameter of 100, 300, or 500 nm. The relative densities were more than 96 % of the theoretical densities of the samples. The dielectric constant of the samples was temperature-stable at temperatures between-50 and 300 °C and it was found that the dielectric constant of the 0.8KN-0.2BT ceramics increased as the BT diameter increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-37

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Wada, Y. Mase, S. Shimizu, K. Maeda, I. Fujii, K. Nakashima, P. Pulpan and N. Miyajima: Key Eng. Mater. Vol. 485 (2011) P. 61-64.

DOI: 10.4028/www.scientific.net/kem.485.61

Google Scholar

[2] K. Kakimoto, I. Masuda and H. Ohsato: Jpn. J. Appl. Phys. Vol. 42 (2003) pp.6102-6105.

Google Scholar

[3] B. Jaffe, W.R. cook, Jr. and H. Jaffe: Piezoelectric Ceramics, Academic Press, (1971).

Google Scholar

[4] K. Matsumoto, Y. Hiruma, H. Nagata and T. Takenaka: Ceramics International Vol. 34 (2008), p.787.

Google Scholar

[5] H. Ge, Y. Hou, C. Wang, M. Zhu and H. Yan: Jpn. J. Appl. Phys. Vol. 48 (2009) 041405.

Google Scholar

[6] K. Nakamura, T. Tokiwa and Y. Kawamura: J. Appl. Phys. Vol. 91 (2002) 9272.

Google Scholar

[7] S. Wada, S. Shimizu, P. Plupan, N. Kumada, D. Tanaka, M, Furukawa, C. Moriyoshi and Y. Kuroiwa: Jpn. J. Appl. Phys. Vol. 118 (2010) pp.691-692.

Google Scholar

[8] S. Wada, M. Nitta, N. Kumada, D. Tanaka, M. Furukawa, S. Ohno, C. Moriyoshi and Y. Kuroiwa: Jpn. J. Appl. Phys. (2008) pp.7678-7684.

DOI: 10.1143/jjap.47.7678

Google Scholar

[9] R. J. Bratton, T. Y. Tien: J. Am. Ceram. Soc., 50, pp.90-93 (1967).

Google Scholar

[10] K. Yamashita, S. Shimizu, I. Fujii, K. Nakashima, N. Kumada, T. Tsukada and S. Wada: Key Eng. Mater. Vol. 485 (2011) pp.39-42.

Google Scholar

[11] K. Yamashita, S. Shimizu, I. Fujii, K. Nakashima, N. Kumada, T. Tsukada, T. S. Suzuki, T. Uchikoshi, Y. Sakka, and S. Wada: Materials Science and Engineering Vol. 18 (2011) 092065.

DOI: 10.1088/1757-899x/18/9/092065

Google Scholar

[12] Y. Kigoshi, S. Hatta, T. Teranishi, T. Hoshina, H. Takeda, O. Sakurai and T. Tsurumi: Key Eng. Mater. Vol. 445 (2010) P. 27-30.

DOI: 10.4028/www.scientific.net/kem.445.27

Google Scholar

[13] X. Wang, R. Chen, Z. Gui, L. Li: Materials Science and Engineering B99 (2003) pp.199-202.

Google Scholar

[14] M. H. Fray, Z. Xu, P. han and D.A. Payne: Ferroelectrics 206 (1998) 337.

Google Scholar

[15] A. Polotai, A. Ragulya and C. Randoll: Ferroelectrics 288 (2003) 93.

Google Scholar

[16] Y. Park, Y.H. Kim, H.G. Kim: Materials Letters 28 (1996) pp.101-106.

Google Scholar

[17] G. Arlt, D. Hennings and G. De With: Jpn. J. Appl. Phys. 58 (1985) 1619.

Google Scholar

[18] S. Shimizu, N. Kumada, K. Nakashima, I. Fuji, D. Tanaka, T. Uchikoshi, Y. Sakka and S. Wada: Key Eng. Mater. Vol. 485 (2011) pp.89-92.

Google Scholar