Crystal Growth and Characterization of (Bi0.5Na0.5)TiO3-BaTiO3 Single Crystals Obtained by the Top-Seeded Solution Growth Method under High-Pressure Oxygen Atmosphere

Article Preview

Abstract:

A single crystal of ferroelectric 0.88(Bi,Na)TiO30.12BaTiO3 (BNTBT) solid solution with tetragonal P4mm structure was grown by the top-seeded solution growth (TSSG) method at a high oxygen pressure (PO2) of 0.9 MPa. The crystals grown by the high-PO2 TSSG method exhibited a large remanent polarization (Pr) of 54 μC/cm2, which leads to a spontaneous polarization of 54 μC/cm2. The large Pr compared with that of crystals grown at PO2 = 0.1 MPa is suggested to originate from a low oxygen vacancy concentration for the crystals grown at a higher PO2. The high-PO2 TSSG method was demonstrated to be effective for obtaining BNTBT crystals with superior polarization and piezoelectric properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-28

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Smolenskii, V.A. Isupo, A.I. Agranovskaya and N.N. Krainik: Sov. Phys. Solid State. Vol. 2 (1961), p.2651.

Google Scholar

[2] T. Takenaka, K. Maruyama and K. Sakata: Jpn. J. Appl. Phys. Vol. 30 (1991), p.2236.

Google Scholar

[3] G. S. Xu, Z. Q. Duan, X. F. Wang and D. F. Yang: J. Cryst. Growth Vol. 275 (2005), p.113.

Google Scholar

[4] Y. Hosono, K. Harada and Y. Yamashita: Jpn. J. Appl. Phys. Vol. 40 (2001), p.5722.

Google Scholar

[5] Y. M. Chiang, G. W. Farrey and A. N. Soukhojak: Appl. Phys. Lett. Vol. 73 (1998), p.3683.

Google Scholar

[6] J. B. Babu, M. He, D. F. Zhang, X. L. Chen and R. Dhanasekaran: Appl. Phys. Lett. Vol. 90 (2007), p.102901.

Google Scholar

[7] Y. Noguchi, I. Tanabe, M. Suzuki and M. Miyayama: J. Ceram. Soc. Jpn. Vol. 116 (2008), p.994.

Google Scholar

[8] J. B. Babu, G. Madeswaran, M. He, D. F. Zhang, X. L. Chen and R. Dhanasekaran: J. Cryst. Growth Vol. 310 (2008), p.467.

Google Scholar

[9] W. W. Ge, H. Liu, X. Y. Zhao, X. M. Pan, T. H. He, D. Lin, H. Q. Xu and H. S. Luo: J. Alloys Compd. Vol. 456 (2008), p.503.

Google Scholar

[10] W. W. Ge, H. Liu, X. Y. Zhao, X. B. Li, X. M. Pan, D. Lin, H. Q. Xu, X. P. Jiang and H. S. Luo: Appl. Phys. A Vol. 95 (2009), p.761.

Google Scholar

[11] Q. H. Zhang, Y. Y. Zhang, F. F. Wang, D. Lin, X. B. Li, X. Y. Zhao and H. S. Luo: J. Cryst. Growth Vol. 312 (2010), p.457.

Google Scholar

[12] H. Onozuka, Y. Kitanaka, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. Vol. 50 (2011), p. 09NE07.

Google Scholar

[13] Y. Hiruma, K. Yoshii, H. Nagata and T. Takenaka: Ferroelectrics. Vol. 346 (2007), p.114.

Google Scholar

[14] K. Yamamoto, M. Suzuki, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. Vol. 47 (2008), p.7623.

Google Scholar

[15] M. Suzuki, A. Morishita, Y. Kitanaka, Y. Noguchi and M. Miyayama: Jpn. J. Appl. Phys. Vol. 49 (2010), p. 09MD09.

Google Scholar

[16] T. Tsurumi: J. Ceram. Soc. Japan Vol. 115 (2007), p.17.

Google Scholar

[17] Y. Kitanaka, Y. Noguchi and M. Miyayama: Phy. Rev. B Vol. 81 (2010), p.094114.

Google Scholar