[1]
S.W. Doebling, C.R. Farrar, M.B. Prime, D.W. Shevitz, Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review, Technical Report LA-13070-MS, UC-900, Los Alamos National Laboratory, New Mexico 87545, USA, (1996).
DOI: 10.2172/249299
Google Scholar
[2]
I. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D. Shi, A carbon nanotube strain sensor for structural health monitoring, Smart Materials andStructures 15 (2006) 737-748.
DOI: 10.1088/0964-1726/15/3/009
Google Scholar
[3]
S. Minakuchi, H. Tsukamoto, N. Takeda, Hierarchical sensing system for detecting impact damage in composite structures combining a fiber optic spinal cord network and distributed sensor nerve cell devices, Proc. 7th International Workshop on StructuralHealth Monitoring, Stanford, CA, USA, 2009, pp.878-885.
DOI: 10.1117/12.815581
Google Scholar
[4]
S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
DOI: 10.1038/354056a0
Google Scholar
[5]
X. Yu, E. Kwon, A carbon nanotube/cement composite with piezoresistive properties, Smart Materials and Structures 18 (2009).
DOI: 10.1088/0964-1726/18/5/055010
Google Scholar
[6]
S. Wen, D.D.L. Chung, Double percolation in the electrical conduction in carbon fiber reinforced cement-based materials, Carbon 45 (2007) 263–267.
DOI: 10.1016/j.carbon.2006.09.031
Google Scholar
[7]
B. Han, X. Yu, J. Ou, Effect of water content on the piezoresistivity of MWNT/cement composites, J Mater Sci 45 (2010) 3714–3719.
DOI: 10.1007/s10853-010-4414-7
Google Scholar
[8]
S.J. Chen, F.G. Collins, A.J.N. Macleod, Z. Pan, W.H. Duan, C.M. Wang, Carbon nanotube–cement composites: A retrospect, The IES Journal Part A: Civil&Structural Engineering 4 (2011) 254-265.
DOI: 10.1080/19373260.2011.615474
Google Scholar
[9]
G.Y. Li, P.M. Wang, X. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites, Cement&Concrete Composites 29 (2007) 377–382.
DOI: 10.1016/j.cemconcomp.2006.12.011
Google Scholar
[10]
Z. Jia, Z. Wang, J. Liang, B. Wei, D. Wu, Production of short multi-walled carbon nanotubes, Carbon 37 (1999) 903-906.
DOI: 10.1016/s0008-6223(98)00229-2
Google Scholar
[11]
W.H. Duan, Q. Wang, F. Collins, Dispersion of carbon nanotubes with SDS surfactants: a study from a binding energy perspective, Chemical Science 2 (2011) 1407–1413.
DOI: 10.1039/c0sc00616e
Google Scholar
[12]
Y.S. Ibarra, J.J. Gaitero, E. Erkizia, I. Campillo, Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions, Physica Status Solidi(a) 203 (2006) 1076–1081.
DOI: 10.1002/pssa.200566166
Google Scholar
[13]
S. Musso, J. -M. Tulliani, G. Ferro, A. Tagliaferro, Influence of carbon nanotubes structure on the mechanical behavior of cement composites, Composites Science and Technology 69 (2009) 1985–(1990).
DOI: 10.1016/j.compscitech.2009.05.002
Google Scholar
[14]
M.S. Konsta-Gdoutos, Z.S. Metaxa, S.P. Shah, Highly dispersed carbon nanotube reinforced cement based materials, Cement and Concrete Research 40 (2010) 1052–1059.
DOI: 10.1016/j.cemconres.2010.02.015
Google Scholar
[15]
J. Yu, N. Grossiord, C.E. Koning, J. Loos, Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution, Carbon 45 (2007) 618–623.
DOI: 10.1016/j.carbon.2006.10.010
Google Scholar
[16]
J.L. Luo, Z. Duan, H. Li, The influence of surfactants on the processing of multi-walled carbon nanotubes in reinforced cement matrix composites, Physica Status Solidi a-Applications and Materials Science 206 (2009) 2783–2790.
DOI: 10.1002/pssa.200824310
Google Scholar
[17]
G.Y. Li, P.M. Wang, X. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon 43 (2005) 1239–1245.
DOI: 10.1016/j.carbon.2004.12.017
Google Scholar
[18]
R.K. Abu Al-Rub, A.I. Ashour, B.M. Tyson, On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites, Construction and Building Materials 35 (2012) 647–655.
DOI: 10.1016/j.conbuildmat.2012.04.086
Google Scholar
[19]
J. Makar, The effect of SWCNT and other nanomaterials on cement hydration and reinforcement, Nanotechnology in civil infrastructure: a paradigm shift, K. Gopalarishnan et al. eds., Heidelberg: Springer, Berlin, 2011, 103–130.
DOI: 10.1007/978-3-642-16657-0_4
Google Scholar
[20]
G.E. Pike, C.H. Seager, Percolation and Conductivity: A Computer Study. I. Physical Review B 10 (1973) 1421-1434.
Google Scholar
[21]
P. Xie, P. Gu, J.J. Beaudoin, Electrical percolation phenomena in cement composites containing conductive fibres, Journal of Materials Science 31 (1996) 4093-4097.
DOI: 10.1007/bf00352673
Google Scholar
[22]
L. Coppola, A. Buoso, F. Corazza, Electrical Properties of Carbon Nanotubes Cement Composites for Monitoring Stress Conditions in Concrete Structures, Applied Mechanics and Materials 82 (2011) 118-123.
DOI: 10.4028/www.scientific.net/amm.82.118
Google Scholar
[23]
B. Han, X. Yu, E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring, Nanotechnology 20 (2009).
DOI: 10.1088/0957-4484/20/44/445501
Google Scholar
[24]
B. Han, K. Zhang, X. Yu, E. Kwon, J. Ou, Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites, Cement&Concrete Composites (2012).
DOI: 10.1016/j.cemconcomp.2012.02.012
Google Scholar
[25]
A. Robbins, W.C. Miller, Circuit analysis: theory and practice, Thomson/Delmar Learning, New York, (2003).
Google Scholar
[26]
B. Han, X. Yu, K. Zhang, E. Kwon, J. Ou, Sensing properties of CNT-filled cement-based stress sensors, J Civil Struct Health Monit 1 (2011) 17–24.
DOI: 10.1007/s13349-010-0001-5
Google Scholar
[27]
B. Han, X. Guan, J. Ou, Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors, Sensors and Actuators A 135 (2007) 360–369.
DOI: 10.1016/j.sna.2006.08.003
Google Scholar
[28]
N. Banthia, S. Djeridane, M. Pigeon, Electrical resistivity of carbon and steel micro-fiber reinforced cements, Cement and Concrete Research 22 (1992) 804–814.
DOI: 10.1016/0008-8846(92)90104-4
Google Scholar