[1]
S. J. Lee, H. Sohn, H. Jung-Wuk, Time Reversal Based Piezoelectric Transducer Self-diagnosis under Varying Temperature, Journal Nondestructive Evaluation, Bd. 29, pp.75-91, (2010).
DOI: 10.1007/s10921-010-0067-3
Google Scholar
[2]
M. I. Friswell, D. J. Inman, Sensor Validation for Smart Structures, Journal of Intelligent Material Systems and Structures, Bd. 10, pp.973-982, (1999).
DOI: 10.1106/gvd2-egpn-c5b1-dpnx
Google Scholar
[3]
G. Park, C. R. Farrar, F. L. di, S. Coccia, Performance assessment and validation of piezoelectric active-sensors in structural health monitoring, Smart Materials and Structures, Bd. 15, pp.1673-1683, (2006).
DOI: 10.1088/0964-1726/15/6/020
Google Scholar
[4]
M. Bach, C. -P. Fritzen, B. Eckstein, H. Speckmann, Self-Diagnostic Capabilities of Piezoelectric Transducers Using the Electromechanical Impedance, in 6th International Workshop on Structural Health Monitoring, Stanford, (2007).
Google Scholar
[5]
A. -M. Yan, G. Kerschen, P. De Boe, J. -C. Golinval, Structural damage diagnosis under varying environmental conditions - part 2: local PCA for non-linear cases, Mechanical Systems and Processing, Bd. 19, pp.865-880, (2005).
DOI: 10.1016/j.ymssp.2004.12.003
Google Scholar
[6]
H. Sohn, K. Worden, C. Farrar, Statistical Damage Classification Under Changing Environmental and Operational Conditions, Journal of Intelligent Material Systems and Structures, Bd. 13, pp.561-574, (2002).
DOI: 10.1106/104538902030904
Google Scholar
[7]
P. Kraemer, C. -P. Fritzen, Sensor Fault Identification Using Autoregressive Models and the Mutual Information Concept, Key Engineering Materials, Nr. 347, pp.387-392, (2007).
DOI: 10.4028/www.scientific.net/kem.347.387
Google Scholar
[8]
P. Kraemer, I. Buethe, C. -P. Fritzen, Damage Detection under variable environmental conditions using Self-Organizing Maps, Cracow, Poland, (2010).
Google Scholar
[9]
C. Liang, F. Sun, C. Rogers, Coupled Electro-Mechanical Analysis of Adaptive Material Systems - Determination of the Actuator Power Consumption and System Energy Transfer, Journal of Intelligent Material Systems and Structures, Bd. 5, pp.12-20, (1994).
DOI: 10.1177/1045389x9400500102
Google Scholar
[10]
A. N. Zagrai, V. Giurgiutiu, Electro-Mechanical Impedance Method for Crack Detection in Thin Plates, Journal for Intelligent Material Systems and Strucutres, Bd. 12, pp.709-718, (2001).
DOI: 10.1177/104538901320560355
Google Scholar
[11]
V. Giurgiutiu, A. Zagrai, Characterization of Piezoelectric Wafer Active Sensors, Journal of Intelligent Material Systems and Stuctures, Bd. 11, pp.959-975, (2000).
DOI: 10.1106/a1hu-23jd-m5au-engw
Google Scholar
[12]
R. Dugnani, Dynamic Behavior of Structure-mounted Disk-shape Piezoelectric Sensors Including the Adhesive Layer, ; Journal of Intelligent Material Systems and Structures, Bd. 20, pp.1553-1564, (2009).
DOI: 10.1177/1045389x08101633
Google Scholar
[13]
D. Berlincourt, H. H. A. Krueger, Properties of Piezoelectricity, Technical Publication TP-226, (2000).
Google Scholar
[14]
V. Giurgiutiu, S. E. Lyshevski, Micromechatronics: Modeling, Analysis and Design with MATLAB, Florida: CRC Press, (2004).
Google Scholar
[15]
Henkel-Corporation, Hysol EA 9394 Epoxy Paste Adhesive, (2002).
Google Scholar
[16]
M. W. Hooker, Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 °C, (1998).
Google Scholar
[17]
D. M. Peairs, Development of a Self-Sensing and Self-Healing Bolted Joint, MSc. thesis, Virginia Polytechnic Institute, Blacksburg, VA, (2002).
Google Scholar
[18]
A. C. Rencher, Methods of Multivariate Analysis, John Wiley & Sons, Inc., (2002).
Google Scholar
[19]
V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Elsevier Science & Technology, (2007).
Google Scholar