The Constitutive Model and Processing Map for In Situ 5wt% TiB2 Reinforced 7050 Al Alloy Matrix Composite

Article Preview

Abstract:

This study investigated the constitutive flow behavior and hot workability of in-situ 5wt% TiB2 reinforced 7050 Al alloy matrix composite by hot compression experiments. Based on the experimental results of flow curves, a constitutive model describing the relationship of the flow stress, true strain, strain rate and temperature is proposed. Substantially, it is found the constitutive equation of flow stress is dependent on the strain, strain rate and temperature. The coefficients (E.g., α, n, Q and lnA) in the equation are functions of true strains. The results of the calculated values from constitutive equation are verified to well agree with the experimental values. Furthermore, the processing map of the composite is created in order to determine the hot processing domains. The optimum zones for hot workability and instability regions are identified. In instability domain, the microstructures display the main failure modes as the particle cracking and interface debonding.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

11-19

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yi, N. Ma, Y. Zhang, X. Li, H. Wang, Effective elastic moduli of Al-Si composites reinforced insitu with TiB2 particles, Scripta Materialia 54 (2006) 1093-1097.

DOI: 10.1016/j.scriptamat.2005.11.070

Google Scholar

[2] Y. Zhang, N. Ma, H. Wang, Effect of particulate/Al interface on the damping behavior of insitu TiB2 reinforced aluminium composite, Materials Letters 61 (2007) 3273-3275.

DOI: 10.1016/j.matlet.2006.11.052

Google Scholar

[3] M. Huang, X. Li, H. Yi, N. Ma, H. Wang, Effect of insitu TiB2 particle reinforcement on the creep resistance of hypoeutectic Al-12Si alloy, Journal of Alloys and Compounds 389 (2005) 275-280.

DOI: 10.1016/j.jallcom.2004.07.052

Google Scholar

[4] D. Chen, Y. -K. Le, L. Bai, N. -H. Ma, X. -F. Li, H. -W. Wang, Mechanical Properties and Microstructure of In-Situ TiB2-7055 Composites, Chinese Journal of Aeronautics 19 (2006) S66-S70.

Google Scholar

[5] G. Ganesan, K. Raghukandan, R. Karthikeyan, B. C. Pai, Journal of Materials Processing Technology 166 (2005) 423-429.

DOI: 10.1016/j.jmatprotec.2004.08.027

Google Scholar

[6] S. V. S. N. Murty, B. NageswaraRao, B. P. Kashyap, On the hot working characteristics of 6061Al-SiC and 6061-Al2O3 particulate reinforced metal matrix composites, Composites Science and Technology 63 (2003) 119-135.

DOI: 10.1016/s0266-3538(02)00197-5

Google Scholar

[7] J. C. Shao, B. L. Xiao, Q. Z. Wang, Z. Y. Ma, Y. Liu, K. Yang, Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol. %SiC/2024Al composite, Materials Science and Engineering A 527 (2010) 7865-7872.

DOI: 10.1016/j.msea.2010.08.080

Google Scholar

[8] D. P. Mondal, N. V. Ganesh, V. S. Muneshwar, S. Das, N. Ramakrishnan, Effect of SiC concentration and strain rate on the compressive deformation behaviour of 2014Al-SiCp composite, Materials Science and Engineering A 433 (2006) 18-31.

DOI: 10.1016/j.msea.2006.07.007

Google Scholar

[9] Y. V. R. K. Prasad, K. P. Rao, M. Gupta, Kinetics of Hot Deformation in Mg/Nano-Al2O3 Composite, Journal of Composite Materials 44 (2010) 181-194.

DOI: 10.1177/0021998309345345

Google Scholar

[10] P. Cavaliere, E. Cerri, E. Evangelist, Isothermal forging of AA2618 + 20%Al2O3 by means of hot torsion and hot compression tests, Materials Science and Engineering A 387-389 (2004) 857-861.

DOI: 10.1016/j.msea.2003.12.093

Google Scholar

[11] Z. Wang, L. Qi, J. Zhou, J. Guan, J. Liu, A constitutive model for predicting flow stress of Al18B4O33w/AZ91D composite during hot compression and its validation, Computational Materials Science 50 (2011) 2422-2426.

DOI: 10.1016/j.commatsci.2011.03.020

Google Scholar

[12] Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, D. R. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metallurgical Transactions A 15 (1984) 1883-1892.

DOI: 10.1007/bf02664902

Google Scholar

[13] Y. V. R. K. Prasad, K. P. Rao, M. Gupta, Hot workability and deformation mechanisms in Mg/nano-Al2O3 composite, Composites Science and Technology 69 (2009) 1070-1076.

DOI: 10.1016/j.compscitech.2009.01.032

Google Scholar

[14] P. Zhang, F. Li, Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, Journal of Materials Engineering and Performance 19 (2010) 1290-1297.

DOI: 10.1007/s11665-010-9611-7

Google Scholar

[15] G. Q. Tong, K. C. Chan, Deformation behavior of a PM Al6013/15SiCp composite sheet at elevated temperature, Materials Letters 38 (1999) 326-330.

DOI: 10.1016/s0167-577x(98)00183-9

Google Scholar

[16] W. -J. Kim, O. D. Sherby, Particle weakening in superplastic SiC/2124 Al composites at high temperature, Acta Materialia 48 (2000) 1763-1774.

DOI: 10.1016/s1359-6454(00)00006-9

Google Scholar

[17] P. Cavaliere, E. Evangelist, Isothermal forging of metal matrix composites: Recrystallization behaviour by means of deformation efficiency, Composites Science and Technology 66 (2006) 357-362.

DOI: 10.1016/j.compscitech.2005.04.047

Google Scholar

[18] W. L. Zhang, J. X. Wang, F. Yang, Z. Q. Sun, M. Y. Gu, Recrystallization Kinetics of Cold-rolled Squeeze-cast Al/SiC/15w Composites, Journal of Composite Materials 40 (2006) 1117-1131.

DOI: 10.1177/0021998305057426

Google Scholar

[19] Y. C. Lin, X. -M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials and Design 32 (2011) 1733-1759.

DOI: 10.1016/j.matdes.2010.11.048

Google Scholar

[20] S. V. S. N. Murty, B. N. Rao, Instability map for hot working of 6061 Al-10 vol% Al2O3 metal matrix composite, Journal of Physics D Applied Physics 31 (1998) 3306-3311.

DOI: 10.1088/0022-3727/31/22/020

Google Scholar

[21] H. Ziegler (Ed. ), Progress in Solid Mechanics, John Wiley and Sons, New York, (1963).

Google Scholar