[1]
H. Yi, N. Ma, Y. Zhang, X. Li, H. Wang, Effective elastic moduli of Al-Si composites reinforced insitu with TiB2 particles, Scripta Materialia 54 (2006) 1093-1097.
DOI: 10.1016/j.scriptamat.2005.11.070
Google Scholar
[2]
Y. Zhang, N. Ma, H. Wang, Effect of particulate/Al interface on the damping behavior of insitu TiB2 reinforced aluminium composite, Materials Letters 61 (2007) 3273-3275.
DOI: 10.1016/j.matlet.2006.11.052
Google Scholar
[3]
M. Huang, X. Li, H. Yi, N. Ma, H. Wang, Effect of insitu TiB2 particle reinforcement on the creep resistance of hypoeutectic Al-12Si alloy, Journal of Alloys and Compounds 389 (2005) 275-280.
DOI: 10.1016/j.jallcom.2004.07.052
Google Scholar
[4]
D. Chen, Y. -K. Le, L. Bai, N. -H. Ma, X. -F. Li, H. -W. Wang, Mechanical Properties and Microstructure of In-Situ TiB2-7055 Composites, Chinese Journal of Aeronautics 19 (2006) S66-S70.
Google Scholar
[5]
G. Ganesan, K. Raghukandan, R. Karthikeyan, B. C. Pai, Journal of Materials Processing Technology 166 (2005) 423-429.
DOI: 10.1016/j.jmatprotec.2004.08.027
Google Scholar
[6]
S. V. S. N. Murty, B. NageswaraRao, B. P. Kashyap, On the hot working characteristics of 6061Al-SiC and 6061-Al2O3 particulate reinforced metal matrix composites, Composites Science and Technology 63 (2003) 119-135.
DOI: 10.1016/s0266-3538(02)00197-5
Google Scholar
[7]
J. C. Shao, B. L. Xiao, Q. Z. Wang, Z. Y. Ma, Y. Liu, K. Yang, Constitutive flow behavior and hot workability of powder metallurgy processed 20 vol. %SiC/2024Al composite, Materials Science and Engineering A 527 (2010) 7865-7872.
DOI: 10.1016/j.msea.2010.08.080
Google Scholar
[8]
D. P. Mondal, N. V. Ganesh, V. S. Muneshwar, S. Das, N. Ramakrishnan, Effect of SiC concentration and strain rate on the compressive deformation behaviour of 2014Al-SiCp composite, Materials Science and Engineering A 433 (2006) 18-31.
DOI: 10.1016/j.msea.2006.07.007
Google Scholar
[9]
Y. V. R. K. Prasad, K. P. Rao, M. Gupta, Kinetics of Hot Deformation in Mg/Nano-Al2O3 Composite, Journal of Composite Materials 44 (2010) 181-194.
DOI: 10.1177/0021998309345345
Google Scholar
[10]
P. Cavaliere, E. Cerri, E. Evangelist, Isothermal forging of AA2618 + 20%Al2O3 by means of hot torsion and hot compression tests, Materials Science and Engineering A 387-389 (2004) 857-861.
DOI: 10.1016/j.msea.2003.12.093
Google Scholar
[11]
Z. Wang, L. Qi, J. Zhou, J. Guan, J. Liu, A constitutive model for predicting flow stress of Al18B4O33w/AZ91D composite during hot compression and its validation, Computational Materials Science 50 (2011) 2422-2426.
DOI: 10.1016/j.commatsci.2011.03.020
Google Scholar
[12]
Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, D. R. Barker, Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metallurgical Transactions A 15 (1984) 1883-1892.
DOI: 10.1007/bf02664902
Google Scholar
[13]
Y. V. R. K. Prasad, K. P. Rao, M. Gupta, Hot workability and deformation mechanisms in Mg/nano-Al2O3 composite, Composites Science and Technology 69 (2009) 1070-1076.
DOI: 10.1016/j.compscitech.2009.01.032
Google Scholar
[14]
P. Zhang, F. Li, Q. Wan, Constitutive Equation and Processing Map for Hot Deformation of SiC Particles Reinforced Metal Matrix Composites, Journal of Materials Engineering and Performance 19 (2010) 1290-1297.
DOI: 10.1007/s11665-010-9611-7
Google Scholar
[15]
G. Q. Tong, K. C. Chan, Deformation behavior of a PM Al6013/15SiCp composite sheet at elevated temperature, Materials Letters 38 (1999) 326-330.
DOI: 10.1016/s0167-577x(98)00183-9
Google Scholar
[16]
W. -J. Kim, O. D. Sherby, Particle weakening in superplastic SiC/2124 Al composites at high temperature, Acta Materialia 48 (2000) 1763-1774.
DOI: 10.1016/s1359-6454(00)00006-9
Google Scholar
[17]
P. Cavaliere, E. Evangelist, Isothermal forging of metal matrix composites: Recrystallization behaviour by means of deformation efficiency, Composites Science and Technology 66 (2006) 357-362.
DOI: 10.1016/j.compscitech.2005.04.047
Google Scholar
[18]
W. L. Zhang, J. X. Wang, F. Yang, Z. Q. Sun, M. Y. Gu, Recrystallization Kinetics of Cold-rolled Squeeze-cast Al/SiC/15w Composites, Journal of Composite Materials 40 (2006) 1117-1131.
DOI: 10.1177/0021998305057426
Google Scholar
[19]
Y. C. Lin, X. -M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Materials and Design 32 (2011) 1733-1759.
DOI: 10.1016/j.matdes.2010.11.048
Google Scholar
[20]
S. V. S. N. Murty, B. N. Rao, Instability map for hot working of 6061 Al-10 vol% Al2O3 metal matrix composite, Journal of Physics D Applied Physics 31 (1998) 3306-3311.
DOI: 10.1088/0022-3727/31/22/020
Google Scholar
[21]
H. Ziegler (Ed. ), Progress in Solid Mechanics, John Wiley and Sons, New York, (1963).
Google Scholar