Synthesis, Structure and Properties of a Novel Metal-Organic Coordination Polymer, [Zn (NH3)2(BDC)]n

Article Preview

Abstract:

A novel one-dimensional metal-organic coordination polymer, [Zn (NH3)2(BDC)]n (BDC=1,4-benzenedicaboxylate), has been synthesized by solvent evaporation method through self-assembly of Zn (II) salts with terephthalic acid ligand in ammonia aqueous solution. Single crystal X-ray diffraction analysis indicated that each Zn (II) was coordinated by two nitrogen donors from two NH3 and two oxygen counter donors from terephthalic acid ligand. The adjacent zigzag chains are arranged in a parallel fashion and linked by interchain hydrogen bonding interaction and π-π stacking interactions into higher-dimensional framework. The compound has also been characterized by CHN elemental analyses, Single crystal X-ray diffraction analysis, powder X-ray diffraction (PXRD) analysis, Fourier transform infrared (FT-IR) spectra, Thermalgravimetric-differential scanning calorimetric (TG-DSC) and Solid-state nuclear magnetic resonance (NMR), etc. Results showed that the framework of compound was stable at the temperature up to 246°C. The desolvated product [Zn (BDC)]n, which was obtained by removal of molecular NH3 from [Zn (NH3)2(BDC)]n, can be transferred to the different skeleton structures through coordinating different small hydrogen-bond-forming molecules.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

30-36

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.

DOI: 10.1039/b807080f

Google Scholar

[2] V. Finsy, H. Verelst, L. Alaerts, D. De. Vos, P.A. Jacobs, G.V. Baron, J.F.M. Denayer, Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on metal-organic framework MIL-47, J. Am. Chem. Soc. 130 (2008).

DOI: 10.1021/ja800686c

Google Scholar

[3] Z. Guo, R. Cao, X. Wang, H. Li, W. Yuan, G. Wang, H. Wu, J. Li, A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework, J. Am. Chem. Soc. 131 (2009) 6894-6895.

DOI: 10.1021/ja9000129

Google Scholar

[4] B. Wang, A.P. Cote, H. Furukawa, M. O'Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs, Nature 453 (2008) 207-211.

DOI: 10.1038/nature06900

Google Scholar

[5] B. Kesanli, Y. Cui, M.R. Smith, E.W. Bittner, B.C. Bockrath, W. -B. Lin, Highly interpenetrated metal-organic frameworks for hydrogen storage, Angew. Chem. Int. Ed. 44 (2005) 72-75.

DOI: 10.1002/anie.200461214

Google Scholar

[6] M. Mueller, X. Zhang, Y.M. Wang, R.A. Fischer, Nanometer-sized titania hosted inside MOF-5, Chem. Commun. (1) (2009) 119-121.

DOI: 10.1039/b814241f

Google Scholar

[7] R.K. Bhakta, J.L. Herberg, B. Jacobs, A. Highley, R. Behrens, Jr., N.W. Ockwig, J.A. Greathouse, M.D. Allendorf, Metal-organic frameworks as templates for nanoscale NaAlH4, J. Am. Chem. Soc. 131 (2009) 13198-13199.

DOI: 10.1021/ja904431x

Google Scholar

[8] S.R. Halper, L. Do, J.R. Stork, S.M. Cohen, Topological control in heterometallic metal-organic frameworks by anion templating and metalloligand design, J. Am. Chem. Soc. 128 (2006) 15255-15268.

DOI: 10.1021/ja0645483

Google Scholar

[9] R.S. Crees, M.L. Cole, L.R. Hanton, C.J. Sumby, Synthesis of a Zinc(II) imidazolium dicarboxylate ligand metal-organic framework (MOF): a potential precursor to MOF-tethered N-heterocyclic carbene compounds, Inorg. Chem. 49 (2010) 1712-1719.

DOI: 10.1021/ic9021118

Google Scholar

[10] J.F. Eubank, L. Wojtas, M.R. Hight, T. Bousquet, V. Ch. Kravtsov, M. Eddaoudi, The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms, J. Am. Chem. Soc. 133 (2011).

DOI: 10.1021/ja203898s

Google Scholar

[11] Z. Wang, B. Zhang, H. Fujiwara, H. Kobayashi, M. Kurmoo, Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature, Chem. Commun. 4 (2004) 416-417.

DOI: 10.1039/b314221c

Google Scholar

[12] G. Férey, C Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area, Science 309 (2005) 2040-(2042).

DOI: 10.1126/science.1116275

Google Scholar

[13] R. -Q. Zhong, R. -Q. Zou, D.S. Pandey, T. Kiyobayashi, Q. Xu, A novel 3D microporous metal-organic framework of cadmium(II) oxalate with diamondoid network, Inorg. Chem. Commun. 11 (2008) 951-953.

DOI: 10.1016/j.inoche.2008.05.010

Google Scholar

[14] J. Tao, X. Yin, R. Huang, L. Zheng, S.W. Ng, Assembly of a microporous metal-organic framework [Zn(bpdc)(DMSO)](bpdc = 4, 4'-biphenyldicarboxylate) based on paddle-wheel units affording guest inclusion, Inorg. Chem. Commun. 5 (2002) 975-977.

DOI: 10.1016/s1387-7003(02)00623-8

Google Scholar

[15] D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron 64 (2008) 8553-8557.

DOI: 10.1016/j.tet.2008.06.036

Google Scholar

[16] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276-279.

DOI: 10.1038/46248

Google Scholar

[17] O.M. Yaghi, C.E. Davis, G. Li, H. Li, Selective guest binding by tailored channels in a 3-D porous zinc(II)-benzenetricarboxylate network, J. Am. Chem. Soc. 119 (1997) 2861-2868.

DOI: 10.1021/ja9639473

Google Scholar

[18] H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M. O'Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals, Nature 427 (2004) 523-527.

DOI: 10.1038/nature02311

Google Scholar

[19] S. -Y. Yang, L. -S. Long, R. -B. Huang, L. -S. Zheng, S.W. Ng, Poly[bis[(dimethylsulfoxide)zinc(II)]-di-4-benzene-1, 4-dicarboxylato] dimethyl sulfoxide pentasolvate], Acta Cryst. 61 (2005) 1671-1673.

DOI: 10.1107/s1600536805023986

Google Scholar

[20] H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC)(BDC=1, 4-Benzenedicarboxylate), J. Am. Chem. Soc. 120 (1998) 8571-8572.

DOI: 10.1021/ja981669x

Google Scholar

[21] P. Long, Q. Zhao, J. Dong, J. Li, Synthesis of metal-organic frameworks from the system metal/L-glutamic acid/TEA/H2O, J. Coord. Chem. 62 (2009) 1959-(1963).

DOI: 10.1080/00958970902737903

Google Scholar

[22] A. Thirumurugan, C.N.R. Rao, 1, 2-, 1, 3- and 1, 4-Benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure, J. Mater. Chem. 15 (2005) 3852-3858.

DOI: 10.1039/b504666a

Google Scholar

[23] I. Mihalcea, N. Henry, T. Bousquet, C. Volkringer, T. Loiseau, Six-fold coordinated uranyl cations in extended coordination polymers, Cryst. Growth Des. 12 (2012) 4641-4648.

DOI: 10.1021/cg300853f

Google Scholar

[24] B. Paula, B. Zimmermannb, K.M. Frommc, C. Janiaka, [M(μ-O2C-C6H4-CO2)(NH3)2] (M=Cu, Cd; O2C-C6H4-CO2=benzene-1, 4-dicarboxylate, terephthalate): 1D coordination polymers with strong inter-chain hydrogen bonding, Z. Anorg. Allg. Chem. 630 (2004).

DOI: 10.1002/zaac.200400240

Google Scholar

[25] X. -F. Wang, X. -L. Zhang, X. Zhou, J. Li, Y. -F. Kuang, J. -H. Chen, A copper-carboxylate layer-framework with pseudo-Kagomé net, Z. Anorg. Allg. Chem. 638 (2012) 1365-1369.

DOI: 10.1002/zaac.201200131

Google Scholar

[26] O.M. Yaghi, H. Li, and T. L. Groy, Construction of porous solids from hydrogen-bonded metal complexes of 1, 3, 5-benzenetricarboxylic acid, J. Am. Chem. Soc. 118 (1996) 9096-9101.

DOI: 10.1021/ja960746q

Google Scholar

[27] O. Shekhah, H. Wang, T. Strunskus, P. Cyganik, D. Zacher, R. Fischer, C. Woll, Layer-by-layer growth of oriented metal organic polymers on a functionalized organic surface, Langmuir 23 (2007) 7440-7442.

DOI: 10.1021/la701148z

Google Scholar

[28] M. Edgar, R. Mitchell, A.M.Z. Slawin, P. Lightfoot, P.A. Wright, Solid-state transformation of zinc 1, 4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules, Chem. Eur. J. 7 (2001) 5168-5175.

DOI: 10.1002/1521-3765(20011203)7:23<5168::aid-chem5168>3.0.co;2-s

Google Scholar

[29] G. M. Sheldrick, SHELXS-97, Program for Structure Solution, University of Göttingen, Germany, (1997).

Google Scholar

[30] L.L. Wei, J.V. Jagadese, One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications, Chem. Rev. 111 (2011) 688-764.

DOI: 10.1021/cr100160e

Google Scholar