The Effect of PEG on Performance of Li0.96Na0.04Ni1/3Co1/3Mn1/3O2 as Cathode Material

Article Preview

Abstract:

Li0.96Na0.04Ni1/3Co1/3Mn1/3O2 with PEG400 or PEG2000 as additive was synthesized by coprecipitation method. Xray diffraction pattern reveals that both the products with PEG400 and PEG2000 are pure phase. Scanning Electron Microscopy shows that the average sizes of the powders are 100 nm and 80 nm, respectively. The sample with PEG 2000 has initial discharge capacity (205.8 Mah×g1) and the sample with PEG 400 exhibits good cycle performance with the capacity retention of 86.34 % after 90 cycles compared to that has no additive (167.6 mAh.g-1 and 71.18 %) in the cut-off voltage of 2.0-4.5 V at 0.1 C rate. Therefore, PEG400 or PEG2000 as additive should improve the performance of Li0.96Na0.04Ni1/3Co1/3Mn1/3O2 cathode material.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

7-10

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Ohzuku, Y. Makimura, Chemistry Letters. 2001, 642-643.

Google Scholar

[2] K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari, Electrochimica Acta. 48 (2002) 145-151.

Google Scholar

[3] Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku, Journal of Power Sources. 119 (2003) 644-648.

DOI: 10.1016/s0378-7753(03)00194-0

Google Scholar

[4] K. Xu, Z. Jie, R. Li, Z. Chen, S. Wu, J. Gu, J. Chen, Electrochimica Acta. 60 (2012) 130-133.

Google Scholar

[5] X. W. Li, Y. B. Lin, Y. Lin, H. Lai, Z. G. Huang, Rare Metals. 31 (2012) 140-144.

Google Scholar

[6] T. E. Hong, E. D. Jeong, S. R. Baek, M. R. Byeon, Y. S. Lee, F. N. Khan, H. S. Yang, Journal of Applied Electrochemistry. 42 (2012) 41-46.

Google Scholar

[7] L. Tan, H. W. Liu, Russian Journal of Electrochemistry. 47 (2011) 156-160.

Google Scholar

[8] C. V. Rao, A. L. M. Reddy, Y. Ishikawa, P. M. Ajayan, Acs Applied Materials & Interfaces. 3 (2011) 2966-2972.

Google Scholar

[9] J. Molenda, A. Milewska, M. Molenda, Solid State Ionics. 192 (2011) 313-320.

DOI: 10.1016/j.ssi.2010.11.026

Google Scholar

[10] J. B. Li, Y. L. Xu, L. L. Xiong, J. P. Wang, Acta Physico-Chimica Sinica. 27 (2011) 2593-2599.

Google Scholar

[11] Y. W. Li, Y. X. Li, S. K. Zhong, F. P. Li, J. W. Yang, Integrated Ferroelectrics. 127(2011) 150-156.

Google Scholar

[12] M. H. Jaafar, N. S. Mohamed, R. Yahya, N. Kamarulzaman, in International Congress on Advances in Applied Physics and Materials Science. 1400 (2011) 280-285.

Google Scholar

[13] C. X. Ding, Y. C. Bai, X. Y. Feng, C. H. Chen, Solid State Ionics. 189 (2011) 69-73.

Google Scholar

[14] Z. -H. Wang, L. -X. Yuan, M. Wu, D. Sun, Y. -H. Huang, Electrochimica Acta. 56 (2011) 8477-8483.

Google Scholar

[15] S. H. Park, S. S. Shin, Y. K. Sun, Materials Chemistry and Physics. 95 (2006) 218-221.

Google Scholar

[16] L. Tan, H. W. Liu, Solid State Ionics. 181 (2010) 1530-1533.

Google Scholar

[17] J. L. Xie, X. A. Huang, Z. B. Zhu, J. H. Dai, Ceramics International. 36 (2010) 2485-2487.

Google Scholar

[18] Y. F. Su, F. Wu, M. Wang, L. Y. Bao, S. Chen, Journal of Power Sources. 195 (2010) 2362-2367.

Google Scholar

[19] A. M. A. Hashem, A. E. Abdel-Ghany, A. E. Eid, J. Trottier, K. Zaghib, A. Mauger, C. M. Julien, Journal of Power Sources. 196 (2011) 8632-8637.

DOI: 10.1016/j.jpowsour.2011.06.039

Google Scholar

[20] P. Gao, G. Yang, H. D. Liu, L. Wang, H. S. Zhou, Solid State Ionics. 207 (2012) 50-56.

Google Scholar

[21] S. Y. Yang, X. Y. Wang, Q. Q. Chen, X. K. Yang, J. J. Li, Q. L. Wei, Journal of Solid State Electrochemistry. 16 (2012) 481-490.

Google Scholar