Synthesis and Optical Properties of ZnS Nanoparticles Using Multi-Mercaptan-Terminated Thio Ether as Surface Modifier

Article Preview

Abstract:

ZnS nanoparticles have been prepared by using 2, 3-dimercaptoethylthiopropanethiol (BES) as the coordinating modifier reagent to form Zn-thiol complex at low reaction temperatures. By controlling the experimental conditions, the diameter of the ZnS nanopaticles can be tuned from 43 nm to 115 nm. Systematic experiments were carried out to investigate the factors such as the amounts of the reagents (thiourea and BES) and the temperature, which have great influence on the sizes of the products. And when the content of BES is much higher, ZnS nanopaticles with mercapto surface modification were synthesized. In addition, massive blue shift in UV-vis spectra has been observed and the photoluminescence spectra of the ZnS show a strong emission at approximate 432 nm and 527 nm. Therefore, the preparation and properties studies of different ZnS sizes will offer great opportunities to explore the dependence of a material’s properties and find many interesting applications in the optical devices.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

24-29

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 241.

Google Scholar

[2] Wang, Z. W.; Daemen, L. L.; Zhao, Y. S.; Zha, C. S.; Downs, R. T.; Wang, X. D.; Wang, Z. L.; Hemlry, R. J. Nat. Mater. 2005, 4, 922.

Google Scholar

[3] Wang, J. Small 2005, 1, 1036. (b) Katz, E.; Willner, I. Angew. Chem., Int. Ed. 2004, 43, 6042.

Google Scholar

[4] Zhao, Q. R.; Gao, Y.; Bai, X.; Wu, C. Z.; Xie, Y. Eur. J. Inorg. Chem. 2006, 1643.

Google Scholar

[5] Mukherji, D.; Pigozzi, G.; Schmitz, F.; Nath, O.; Rosler, J.; Kostorz, G. Nanotechnology 2005, 16, 2716.

Google Scholar

[6] Wu, X.; Li, K. W.; Wang, H., Facile synthesis of ZnS nanostructured spheres and their photocatalytic properties. J. Alloy. Compd. 2009, 487 (1-2), 537-544.

DOI: 10.1016/j.jallcom.2009.08.010

Google Scholar

[7] Zhao, Q. R.; Xie, Y.; Zhang, Z. G.; Bai, X., Size-selective synthesis of zinc sulfide hierarchical structures and their photocatalytic activity. Crystal Growth & Design 2007, 7 (1), 153.

DOI: 10.1021/cg060521j

Google Scholar

[8] Trindade, T.; O'Brien, P.; Pickett, N. L., Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mat. 2001, 13 (11), 3843.

Google Scholar

[9] Weaver, J.; Zakeri, R.; Aouadi, S.; Kohli, P., Synthesis and characterization of quantum dot-polymer composites. Journal of Materials Chemistry 2009, 19 (20), 3198.

DOI: 10.1039/b820204d

Google Scholar

[10] Lin, Z.; Cheng, Y. R.; Lu, H.; Zhang, L. A.; Yang, B., Preparation and characterization of novel ZnS/sulfur-containing polymer nanocomposite optical materials with high refractive index and high nanophase contents. Polymer 2010, 51 (23), 5424.

DOI: 10.1016/j.polymer.2010.09.017

Google Scholar

[11] Goharshadi, E. K.; Mehrkhah, R.; Nancarrow, P., Synthesis, characterization, and measurement of structural, optical, and phtotoluminescent properties of zinc sulfide quantum dots. Materials Science in Semiconductor Processing (2012).

DOI: 10.1016/j.mssp.2012.09.012

Google Scholar

[12] Nanda, J., Size-selected zinc sulfide nanocrystallites: Synthesis, structure, and optical studies. Chemistry of Materials, 2000. 12(4): 1018.

DOI: 10.1021/cm990583f

Google Scholar

[13] Torres-Martı´nez, C. L.; Nguyen, L.; Kho, R.; Bae, W.; Bozhilov, K.; Klimov, V.; Mehra, R. K. Nanotechnology 1999, 10, 340.

DOI: 10.1088/0957-4484/10/3/319

Google Scholar

[14] Wang, Y. B.; Wu, J. C.; Zheng, J. W.; Xu, R., Highly active ZnxCd1-xS photocatalysts containing earth abundant elements only for H-2 production from water under visible light. Catalysis Science & Technology 2011, 1 (6), 940.

DOI: 10.1039/c1cy00143d

Google Scholar

[15] Tauc J, Menth A. States in the gap. J Non-Cryst Solids 1972; 8: 569.

Google Scholar

[16] Silambarasan, A.; Kavitha, H. P.; Ponnusamy, S.; Navaneethan, M.; Hayakawa, Y., Monodispersed synthesis of hierarchical wurtzite ZnS nanostructures and its functional properties. Materials Letters 2012, 81, 209.

DOI: 10.1016/j.matlet.2012.05.005

Google Scholar

[17] Babayan, Y.; Barton, J. E.; Greyson, E. C.; Odom, T. W., Templated and hierarchical assembly of CdSe/ZnS quantum dots. Advanced Materials 2004, 16 (15), 1341.

DOI: 10.1002/adma.200400764

Google Scholar

[18] Wu, Q. Z.; Cao, H. Q.; Zhang, S. C.; Zhang, X. R.; Rabinovich, D., Generation and optical properties of monodisperse Wurtzite-type ZnS microspheres. Inorganic Chemistry 2006, 45 (18), 7316.

DOI: 10.1021/ic060936u

Google Scholar

[19] Ye, C. H.; Fang, X. S.; Li, G. H.; Zhang, L. D., Origin of the green photoluminescence from zinc sulfide nanobelts. Applied Physics Letters 2004, 85 (15), 3035.

DOI: 10.1063/1.1807018

Google Scholar

[20] Kar, S.; Chaudhuri, S., Synthesis and optical properties of single and bicrystalline ZnS nanoribbons. Chemical Physics Letters 2005, 414 (1-3), 40.

DOI: 10.1016/j.cplett.2005.08.021

Google Scholar

[21] Li, Z. P.; Liu, B. B.; Li, X. L.; Yu, S. D.; Wang, L.; Hou, Y. Y.; Zou, Y. G.; Yao, M. G.; Li, Q. J.; Zou, B.; Cui, T.; Zou, G. T.; Wang, G. R.; Liu, Y. H., Synthesis of ZnS nanocrystals with controllable structure and morphology and their photoluminescence property. Nanotechnology 2007, 18 (25).

DOI: 10.1088/0957-4484/18/25/255602

Google Scholar

[22] Li, Y. W.; You, L. P.; Yan, REN.; Shi, P. B.; Du, H. L.; Qiao, Y. P.; Qin, G. G. Nanotechnology 2004, 15, 581.

Google Scholar