Synthesis and Oxygen Sensing Properties of Ti1-xSnxO2 Solid Solutions Nanoparticles

Article Preview

Abstract:

Rutile Ti1xSnxO2 (0.2x<1) solid solutions had been prepared using a sol-hydrothermal method, which combined the conventional sol-gel process with hydrothermal method. Hybrid alkoxides of Ti4+ and Sn4+ were used as precursors in the sol-gel process and Sn4+ served as crystal-inducing agent during the formation of rutile crystal lattice in the hydrothermal process at 200°C. The microstructures and morphologies of nanoparticles were detected with XRD and TEM. Rutile Ti1xSnxO2 solid solutions nanoparticles with well-distributed crystallite sizes about 10nm were obtained with Sn4+ content above 20mol% without any high temperature calcination. The oxygen sensitivity properties of Ti1xSnxO2 solid solutions had also been investigated. It is proved Ti1xSnxO2 solid solutions exhibited higher oxygen responses than single TiO2 or SnO2. A typical sample of Ti0.5Sn0.5O2 presented the best sensitivity is approximately 6 under 400°C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 575-576)

Pages:

45-49

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Morikawa A., Kikuta K., Suda A., Shinjo H. Enhancement of oxygen storage capacity by reductive treatment of Al2O3 and CeO2-ZrO2 solid solution nanocomposite. Appl. Catal. B-Environ., 2009, 88, pp.542-549.

DOI: 10.1016/j.apcatb.2008.10.019

Google Scholar

[2] Chen L.F., Hu J.C., Richards R.M. Catalytic properties of nanoscale iron-doped zirconia solid-solution aerogels. ChemPhysChem, 2008, 9, pp.1069-1078.

DOI: 10.1002/cphc.200800041

Google Scholar

[3] Koparde V.N., Cummings P.T. Phase transformations during sintering of titania nanoparticles. ACS Nano, 2008, 2, pp.1620-1624.

DOI: 10.1021/nn800092m

Google Scholar

[4] Carneiro J.T., Savenije T.J., ET AL. How phase composition influences optoelectronic and photocatalytic properties of TiO2. J. Phys. Chem. C, 2011, 115, pp.2211-2217.

DOI: 10.1021/jp110190a

Google Scholar

[5] Carotta M.C., Gherardi S., Guidi V., ET AL. (Ti, Sn)O2 binary solid solutions for gas sensing: Spectroscopic, optical and transport properties. Sensor Actuat. B, 2008, 130, pp.38-45.

DOI: 10.1016/j.snb.2007.07.112

Google Scholar

[6] Ahmed M. A., Yousef E.S., Abdel-Messih M. F. Preparation and characterization of nanocomposites in system as: SnO2-xTiO2 (where x=25, 50 and 75mol%). J. Sol-Gel Sci. Technol., 2011, 60, pp.58-65.

DOI: 10.1007/s10971-011-2550-4

Google Scholar

[7] Shen Q.H., Yang H., Xu Q., Zhu Y., Hao R. In-situ preparation of TiO2/SnO2 nanocrystalline sol for photocatalysis. Mater. Lett., 2010, 64, pp.442-444.

DOI: 10.1016/j.matlet.2009.11.042

Google Scholar

[8] Yu J.G., Liu S.W., Zhou M.H. Enhanced photocalytic activity of hollow anatase microspheres by Sn4+ incorporation. J. Phys. Chem. C, 2008, 112, p.2050-(2057).

DOI: 10.1021/jp0770007

Google Scholar

[9] Hirano M., Dozono H., Kono T. Hydrothermal synthesis and properties of solid solutions and composite nanoparticles in the TiO2-SnO2 system. Mater. Res. Bull., 2011, 46, pp.1384-1390.

DOI: 10.1016/j.materresbull.2011.05.016

Google Scholar

[10] Martínez A.I., Acosta D.R., Cedillo G. Effect of SnO2 on the photocatalytical properties of TiO2 films. Thin Solid Films, 2005, 490, pp.118-123.

DOI: 10.1016/j.tsf.2005.04.060

Google Scholar

[11] Tu Y.F., Huang S.Y., Sang J.P., Zou X.W. Synthesis and photocatalytic properties of Sn-doped TiO2 nanotube arrays. J. Alloys Compd., 2009, 482, pp.382-387.

DOI: 10.1016/j.jallcom.2009.04.027

Google Scholar

[12] Zeng W., Liu T. M., Wang Z. C., Tsukimoto S., Saito M., Ikuhara Y. Selective detection of formaldehyde gas using a Cd-doped TiO2-SnO2 sensor. Sensors, 2009, 9, pp.9029-9038.

DOI: 10.3390/s91109029

Google Scholar

[13] Karunagaran B., Uthirakumar P., Chung S.J., Velumani S., Suh E. -K. TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact., 2007, 58, pp.680-684.

DOI: 10.1016/j.matchar.2006.11.007

Google Scholar