[1]
Boretos, J.W., Eden, M. (1984). Contemporary Biomaterials, Material and Host Response, Clinical Applications, New Technology and Legal Aspects. NoyesPublications, Park Ridge, NJ, pp.232-233.
DOI: 10.1016/s0376-7388(00)81555-0
Google Scholar
[2]
Gonzalez-Carasco, J.L. (2009). Metal as bone repair materials bone repair biomaterials, J.A. Planell, S.M. Best, D. Lacroix and A. Merolli, eds., Cambridge, pp: 159-160.
DOI: 10.1533/9781845696610
Google Scholar
[3]
Kotani, S., Fujita, Y., Kitsugi, T., Nakamura, T., Yamamuro, T., Ohtsuki, C., Kokubo, T. (1991). Bone bonding mechanism of b-tricalcium phosphate, JournalBiomedine Material Research, 25 p.1303–1315.
DOI: 10.1002/jbm.820251010
Google Scholar
[4]
Hench, L. L. (1998), Bioceramics, J. Am. Ceram. Soc, 7, pp.1705-1728.
Google Scholar
[5]
Yonezaki, H., Hayashi, T., Nakagawa, T., Kurosawa, H., Shibuya, K., Ioku, K. (1998). Influence of surface microstructure on the reaction of the active ceramics in vivo, J. Mater. Sci.: Mater. Med, 9, p.381–384.
Google Scholar
[6]
Dabrowski, J.R. (2001). Biomedicine Technology, 46, pp.106-108.
Google Scholar
[7]
Bardos, D.I. (1979), Biomaterial. Medicine. Devices Artif. Organs, 7, pp.73-80.
Google Scholar
[8]
Runkle, C.J., Nichelson, J., Rice, J., Proc. (1984). Int. Powder Metallurgy Conference, Metal Powder Industries Federation, 16, p.705–725.
Google Scholar
[9]
Tandon, R., Disegi, J.A., Kennedy, R.L., Pilliar, R. (1999). Cobalt-Base Alloys for Biomedical Applications, ASTM STP 1365, ASTM, West Conshohocken, PA, p.3–10.
DOI: 10.1520/stp1365-eb
Google Scholar
[10]
Johnson, J.L., Heaney, D.F. (2004). Advance. Material. Processes, 162, p.84–86.
Google Scholar
[11]
Suryanarayana, C (2004).
Google Scholar
[12]
Kalita S. J (2008). Nanostructural Biomaterials, In Sudipta Seal (Eds), Funtional Nanostructures: Processing Characterization and Application (pp.202-205). New York: Springer Science.
Google Scholar