Ionic Liquid Polymeric Membrane: Synthesis, Characterization & Performance Evaluation

Article Preview

Abstract:

Selected ionic liquids are known to enhance the absorption of CO2 for CO2 removal purpose. In the idea to improve the membrane separation performance for natural gas sweetening, ionic liquid modified polymeric membranes were fabricated by using polyethersulfone (PES) and blended with different composition of ionic liquid which are 5 wt% and 15 wt%. Each fabricated membranes were prepared and dried under solvent evaporation at 90°C. Dense structure observed from FESEM analysis indicated the miscible blends of ionic liquid and PES. TGA analysis showed all fabricated membranes are still containing solvent and this resembles that membrane drying period is still insufficient. All fabricated membranes were tested with ideal gas permeation test. From the result, the addition of ionic liquid has enhanced the ideal CO2 pemeance about 150% as compared to pure PES membrane. The ideal CO2/CH4 selectivity was also increase about 85% from the base but however, the separation index is still considered low and this may due to the presence of the solvent. This preliminary result has confirmed that the blending of ionic liquid with pure PES membrane has technically improved the membrane separation performance.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

18-23

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. D. Singer, Ionic Liquids & Green Chemistry, " Saint Mary, s University, Halifax, Nova Scotia.

Google Scholar

[2] K. R. S. Robin D. Roger, ionic liquids as green solvents, American Chemical Society, (2003).

Google Scholar

[3] J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, Advances in CO< sub> 2</sub> capture technology—The US Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control, vol. 2, pp.9-20, (2008).

DOI: 10.1016/s1750-5836(07)00094-1

Google Scholar

[4] D. Luebke, J. B. Ilconich, C. Myers, and H. W. Pennline, Carbon Dioxide Separation with Supported Ionic Liquid Membranes, National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV2007.

DOI: 10.1002/9780470665626.ch10

Google Scholar

[5] A. T. Richard D. Noble, Betty E. Look, Douglas L. Gin, CO2 Separations Using Room Temperature Ionic Liquids and Membranes, The University of Colorado.

Google Scholar

[6] J. Ilconich, C. Myers, H. Pennline, and D. Luebke, Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO< sub> 2</sub>/He separation at temperatures up to 125° C, Journal of Membrane Science, vol. 298, pp.41-47, (2007).

DOI: 10.1016/j.memsci.2007.03.056

Google Scholar

[7] L. A. Neves, J. G. Crespo, and I. M. Coelhoso, Gas permeation studies in supported ionic liquid membranes, Journal of Membrane Science, vol. 357, pp.160-170, (2010).

DOI: 10.1016/j.memsci.2010.04.016

Google Scholar

[8] M. Teramoto, Y. Sakaida, S. S. Fu, N. Ohnishi, H. Matsuyama, T. Maki, T. Fukui, and K. Arai, An attempt for the stabilization of supported liquid membrane, Separation and Purification Technology, vol. 21, pp.137-144, (2000).

DOI: 10.1016/s1383-5866(00)00197-0

Google Scholar

[9] P. Cserjési, N. Nemestóthy, and K. Bélafi-Bakó, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, Journal of Membrane Science, vol. 349, pp.6-11, (2010).

DOI: 10.1016/j.memsci.2009.10.044

Google Scholar

[10] D. Camper, J. Bara, C. Koval, and R. Noble, Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids, Industrial & Engineering Chemistry Research, vol. 45, pp.6279-6283, (2006).

DOI: 10.1021/ie060177n

Google Scholar

[11] L. Lozano, C. Godinez, A. de Los Rios, F. Hernandez-Fernandez, S. Sanchez-Segado, and F. Alguacil, Recent advances in supported ionic liquid membrane technology, Journal of Membrane Science, vol. 376, pp.1-14, (2011).

DOI: 10.1016/j.memsci.2011.03.036

Google Scholar

[12] Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, and R. D. Noble, A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, Journal of Membrane Science, vol. 350, pp.117-123, (2010).

DOI: 10.1016/j.memsci.2009.12.018

Google Scholar

[13] Jason E. Bara, Douglas L. Gin, and R. D. Noble, Effect of Anion on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes, Industrial & Engineering Chemistry Research, vol. 47, pp.9919-9924, December 17, 2008).

DOI: 10.1021/ie801019x

Google Scholar

[14] J. E. Bara, C. J. Gabriel, E. S. Hatakeyama, T. K. Carlisle, S. Lessmann, R. D. Noble, and D. L. Gin, Improving CO< sub> 2</sub> selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents, Journal of Membrane Science, vol. 321, pp.3-7, (2008).

DOI: 10.1016/j.memsci.2007.12.033

Google Scholar

[15] P. Qu, H. Tang, Y. Gao, L. Zhang, and S. Wang, Polyethersulfone composite membrane blended with cellulose fibrils, BioResources, vol. 5, pp.2323-2336, (2010).

Google Scholar

[16] C. Özgen, Effect of Operating Parameters on Performance of Additive/Zeolite/Polymer Mixed Matrix Membranes, Middle East Technical University, (2011).

Google Scholar

[17] C. Özgen, Natural Gas Purification by Zeolite Filled Polyethersulfone Based Mixed Matrix Membranes, Middle East Technical University, (2009).

Google Scholar

[18] C. Y. Liang, P. Uchytil, R. Petrychkovych, Y. C. Lai, K. Friess, M. Sipek, M. Mohan Reddy, and S. Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO< sub> 2</sub> mixed matrix membranes, Separation and Purification Technology, (2012).

DOI: 10.1016/j.seppur.2012.03.016

Google Scholar

[19] C. Özgen, Effect of Preparation and Operation Parameters on Performance of Polyethersulfone Based Mixed Matrix Gas Separation Membranes, Middle East Technical University, (2009).

Google Scholar

[20] Z. L. Xu and F. Alsalhy Qusay, Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution, Journal of Membrane Science, vol. 233, pp.101-111, (2004).

DOI: 10.1016/j.memsci.2004.01.005

Google Scholar

[21] G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review, Industrial & Engineering Chemistry Research, vol. 50, pp.3798-3817, (2011).

DOI: 10.1021/ie101928r

Google Scholar

[22] S. J. Shin, J. P. Kim, H. J. Kim, J. H. Jeon, and B. R. Min, Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive, Desalination, vol. 186, pp.1-10, (2005).

DOI: 10.1016/j.desal.2005.03.092

Google Scholar

[23] S. S. Madaeni, A. Moradi, and V. Kazemi, PDMS coated polyethersulphone composite membranes for separation of propylene and nitrogen gas mixtures, Iranian Polymer Journal, vol. 18, pp.873-879, (2009).

Google Scholar

[24] L. YI, Development of mixed matrix membranes for gas separation application, (2007).

Google Scholar

[25] N. A. A. N. A. Aziz, Effect of Different Shear Rate on Performance of PES Asymmetric Membrane for Gas Separation, Bachelor of Chemical Engineering, Faculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, Pahang, Malaysia, (2006).

DOI: 10.15282/jmes.11.4.2017.12.0278

Google Scholar

[26] A. Finotello, J. E. Bara, D. Camper, and R. D. Noble, Room-temperature ionic liquids: temperature dependence of gas solubility selectivity, Industrial & Engineering Chemistry Research, vol. 47, pp.3453-3459, (2008).

DOI: 10.1021/ie0704142

Google Scholar

[27] K. Boussu, B. Van der Bruggen, and C. Vandecasteele, Evaluation of self-made nanoporous polyethersulfone membranes, relative to commercial nanofiltration membranes, Desalination, vol. 200, pp.416-418, (2006).

DOI: 10.1016/j.desal.2006.03.353

Google Scholar

[28] J. Ren, W. Zhao, C. Cheng, M. Zhou, and C. Zhao, Comparison of pH-sensitivity between two copolymer modified polyethersulfone hollow fiber membranes, Desalination, vol. 280, pp.152-159, (2011).

DOI: 10.1016/j.desal.2011.06.069

Google Scholar

[29] W. A. Rahman, W. Aizan, and A. F. Ismail, Formation and characterization of mixed matrix composite materials for efficient energy gas separation, (2005).

Google Scholar

[30] D. A. Long and D. Long, Raman spectroscopy vol. 206: McGraw-Hill New York, (1977).

Google Scholar

[31] C. A. Teaca, R. Bodirlau, and I. Spiridon, Dissolution of Natural Polymers in Ionic Liquid, Rev. Roum. Chim, vol. 56, pp.33-38, (2011).

Google Scholar