[1]
R. D. Singer, Ionic Liquids & Green Chemistry, " Saint Mary, s University, Halifax, Nova Scotia.
Google Scholar
[2]
K. R. S. Robin D. Roger, ionic liquids as green solvents, American Chemical Society, (2003).
Google Scholar
[3]
J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastava, Advances in CO< sub> 2</sub> capture technology—The US Department of Energy's Carbon Sequestration Program, International Journal of Greenhouse Gas Control, vol. 2, pp.9-20, (2008).
DOI: 10.1016/s1750-5836(07)00094-1
Google Scholar
[4]
D. Luebke, J. B. Ilconich, C. Myers, and H. W. Pennline, Carbon Dioxide Separation with Supported Ionic Liquid Membranes, National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV2007.
DOI: 10.1002/9780470665626.ch10
Google Scholar
[5]
A. T. Richard D. Noble, Betty E. Look, Douglas L. Gin, CO2 Separations Using Room Temperature Ionic Liquids and Membranes, The University of Colorado.
Google Scholar
[6]
J. Ilconich, C. Myers, H. Pennline, and D. Luebke, Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO< sub> 2</sub>/He separation at temperatures up to 125° C, Journal of Membrane Science, vol. 298, pp.41-47, (2007).
DOI: 10.1016/j.memsci.2007.03.056
Google Scholar
[7]
L. A. Neves, J. G. Crespo, and I. M. Coelhoso, Gas permeation studies in supported ionic liquid membranes, Journal of Membrane Science, vol. 357, pp.160-170, (2010).
DOI: 10.1016/j.memsci.2010.04.016
Google Scholar
[8]
M. Teramoto, Y. Sakaida, S. S. Fu, N. Ohnishi, H. Matsuyama, T. Maki, T. Fukui, and K. Arai, An attempt for the stabilization of supported liquid membrane, Separation and Purification Technology, vol. 21, pp.137-144, (2000).
DOI: 10.1016/s1383-5866(00)00197-0
Google Scholar
[9]
P. Cserjési, N. Nemestóthy, and K. Bélafi-Bakó, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, Journal of Membrane Science, vol. 349, pp.6-11, (2010).
DOI: 10.1016/j.memsci.2009.10.044
Google Scholar
[10]
D. Camper, J. Bara, C. Koval, and R. Noble, Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids, Industrial & Engineering Chemistry Research, vol. 45, pp.6279-6283, (2006).
DOI: 10.1021/ie060177n
Google Scholar
[11]
L. Lozano, C. Godinez, A. de Los Rios, F. Hernandez-Fernandez, S. Sanchez-Segado, and F. Alguacil, Recent advances in supported ionic liquid membrane technology, Journal of Membrane Science, vol. 376, pp.1-14, (2011).
DOI: 10.1016/j.memsci.2011.03.036
Google Scholar
[12]
Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, and R. D. Noble, A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, Journal of Membrane Science, vol. 350, pp.117-123, (2010).
DOI: 10.1016/j.memsci.2009.12.018
Google Scholar
[13]
Jason E. Bara, Douglas L. Gin, and R. D. Noble, Effect of Anion on Gas Separation Performance of Polymer−Room-Temperature Ionic Liquid Composite Membranes, Industrial & Engineering Chemistry Research, vol. 47, pp.9919-9924, December 17, 2008).
DOI: 10.1021/ie801019x
Google Scholar
[14]
J. E. Bara, C. J. Gabriel, E. S. Hatakeyama, T. K. Carlisle, S. Lessmann, R. D. Noble, and D. L. Gin, Improving CO< sub> 2</sub> selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents, Journal of Membrane Science, vol. 321, pp.3-7, (2008).
DOI: 10.1016/j.memsci.2007.12.033
Google Scholar
[15]
P. Qu, H. Tang, Y. Gao, L. Zhang, and S. Wang, Polyethersulfone composite membrane blended with cellulose fibrils, BioResources, vol. 5, pp.2323-2336, (2010).
Google Scholar
[16]
C. Özgen, Effect of Operating Parameters on Performance of Additive/Zeolite/Polymer Mixed Matrix Membranes, Middle East Technical University, (2011).
Google Scholar
[17]
C. Özgen, Natural Gas Purification by Zeolite Filled Polyethersulfone Based Mixed Matrix Membranes, Middle East Technical University, (2009).
Google Scholar
[18]
C. Y. Liang, P. Uchytil, R. Petrychkovych, Y. C. Lai, K. Friess, M. Sipek, M. Mohan Reddy, and S. Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO< sub> 2</sub> mixed matrix membranes, Separation and Purification Technology, (2012).
DOI: 10.1016/j.seppur.2012.03.016
Google Scholar
[19]
C. Özgen, Effect of Preparation and Operation Parameters on Performance of Polyethersulfone Based Mixed Matrix Gas Separation Membranes, Middle East Technical University, (2009).
Google Scholar
[20]
Z. L. Xu and F. Alsalhy Qusay, Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution, Journal of Membrane Science, vol. 233, pp.101-111, (2004).
DOI: 10.1016/j.memsci.2004.01.005
Google Scholar
[21]
G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review, Industrial & Engineering Chemistry Research, vol. 50, pp.3798-3817, (2011).
DOI: 10.1021/ie101928r
Google Scholar
[22]
S. J. Shin, J. P. Kim, H. J. Kim, J. H. Jeon, and B. R. Min, Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive, Desalination, vol. 186, pp.1-10, (2005).
DOI: 10.1016/j.desal.2005.03.092
Google Scholar
[23]
S. S. Madaeni, A. Moradi, and V. Kazemi, PDMS coated polyethersulphone composite membranes for separation of propylene and nitrogen gas mixtures, Iranian Polymer Journal, vol. 18, pp.873-879, (2009).
Google Scholar
[24]
L. YI, Development of mixed matrix membranes for gas separation application, (2007).
Google Scholar
[25]
N. A. A. N. A. Aziz, Effect of Different Shear Rate on Performance of PES Asymmetric Membrane for Gas Separation, Bachelor of Chemical Engineering, Faculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, Pahang, Malaysia, (2006).
DOI: 10.15282/jmes.11.4.2017.12.0278
Google Scholar
[26]
A. Finotello, J. E. Bara, D. Camper, and R. D. Noble, Room-temperature ionic liquids: temperature dependence of gas solubility selectivity, Industrial & Engineering Chemistry Research, vol. 47, pp.3453-3459, (2008).
DOI: 10.1021/ie0704142
Google Scholar
[27]
K. Boussu, B. Van der Bruggen, and C. Vandecasteele, Evaluation of self-made nanoporous polyethersulfone membranes, relative to commercial nanofiltration membranes, Desalination, vol. 200, pp.416-418, (2006).
DOI: 10.1016/j.desal.2006.03.353
Google Scholar
[28]
J. Ren, W. Zhao, C. Cheng, M. Zhou, and C. Zhao, Comparison of pH-sensitivity between two copolymer modified polyethersulfone hollow fiber membranes, Desalination, vol. 280, pp.152-159, (2011).
DOI: 10.1016/j.desal.2011.06.069
Google Scholar
[29]
W. A. Rahman, W. Aizan, and A. F. Ismail, Formation and characterization of mixed matrix composite materials for efficient energy gas separation, (2005).
Google Scholar
[30]
D. A. Long and D. Long, Raman spectroscopy vol. 206: McGraw-Hill New York, (1977).
Google Scholar
[31]
C. A. Teaca, R. Bodirlau, and I. Spiridon, Dissolution of Natural Polymers in Ionic Liquid, Rev. Roum. Chim, vol. 56, pp.33-38, (2011).
Google Scholar