Investigation on Impact Resistance Foamed Concrete Reinforced by Polypropylene Fibre

Article Preview

Abstract:

Foamed Concrete (FC) needs high strength to prevent dynamic loading, thus it is important to enhance the ductility. Usage the Polypropylene Fibre (PF) examined its contribution in strength of FC on impact resistance. Microstructures were observed that air voids in matrix of FC produce micro-porous that reduce interfacial bonding into matrix and generate micro-crack that may propagation crack growth. Presence of PF in admixture results fibrillation and reduces micro-cracks. Tensile test was investigated that PF delays crack growth in matrix. In this investigation impact test were conducted using an instrumented drop-weight impact tower. When impactor hits the target surface in free surface condition causes compressive plastic wave transform to be tensile wave. It was affected by tensile strength therefore local effect has not found spalling in crater field. In addition influence of porous in matrix FC has ability to absorb the energy and it was not found distal crack around surface area. Penetration depth results showed FC with PF subjected to impact loading was lower than without FC. Presence of PF increases FC strength and local effect results there was not impression of fragments around distal surface due to brittle crushing.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

24-28

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. M. Li, S. R. Reid, H. M. Wen, A. R. Telford, International Journal of Impact Engineering. Vol. 32 (2005), pp.224-284.

Google Scholar

[2] M. Beppu, K. Miwa, M. Itoh, M. Katayama, T. Ohno, International Journal of Impact Engineering. Vol. 35 (2008), pp.1419-1426.

DOI: 10.1016/j.ijimpeng.2008.07.021

Google Scholar

[3] M. R. Jones, A. McCarthy, Behviour and assesment of Foamed Concrete for Concrtuction Applications, in: R. K. Dhir, M. D. Newlands, A. McCarthy (Eds. ), Use of Foam Concrete in Construction, Thomas Telford, International Concference of University of Dundee, Scotland, UK. (2005).

DOI: 10.1680/uofcic.34068

Google Scholar

[4] A. Z. A. Mujahid, Q.M. Li, Structure and Building, Vol. 162 (2009), pp.77-85.

Google Scholar

[5] E. K. K. Nambiar, K. Ramamurthy, Cement and Concrete Research . Vol. 37 (2007), pp.221-230.

Google Scholar

[6] E. P. Kearsley, P. J. Wainwright, Cement and Concrete Research. Vol. 32 (2002), pp.233-239.

Google Scholar

[7] J. H. Pramana, A. A. A. Samad, A. M. A. Zaidi, F. V. Riza, European Journal Scientific Research. Vol. 44 (2010), pp.285-299.

Google Scholar

[8] A. Just, B. Middendorf, Materials Characterization. Vol. 60 (2009), pp.741-748.

Google Scholar

[9] A. N. Dancygier, D. Z. Yankelevsky, International Journal of Impact Engineering. Vol. 18 (1996), pp.583-599.

Google Scholar

[10] J. Hadipramana, A. A. A. Samad, A. M. A. Zaidi, N. Mohammad, Wirdawati, Advanced Materials Research. Vol. 488-489 (2012), pp.253-257.

DOI: 10.4028/www.scientific.net/amr.488-489.253

Google Scholar

[11] S. Furlan Jr, J. o. B. de Hanai, Cement and Concrete Composites. Vol. 19 (1997), pp.359-366.

Google Scholar

[12] S. Kakooei, H. M. Akil, M. Jamshidi, J. Rouhi, Construction and Building Materials. Vol. 27 (2011), pp.73-77.

Google Scholar

[13] L. J. Gibson, M. F. Ashby, Cellular Solids Structure and Properties, Cambridge University Press, (1997), in press.

Google Scholar

[14] G. a. Y. Lu, T., Energy Absorption of Structures and Materials, in: Woodhead Publishing Limited, Abington Cambridge, England, (2003), in press.

Google Scholar

[15] J. Hadipramana, A. A. A. Samad, A. M. A. Zaidi, N. Mohamad, N. Ali, Advanced Materials Research. Vol. 626 (2013), pp.769-775.

Google Scholar

[16] BS1881, (1983).

Google Scholar

[17] G. Hughes, Nuclear Engineering and Design. Vol. 77 (1984), pp.23-35.

Google Scholar

[18] J. D. Riera, Nuclear Engineering and Design. Vol. 115 (1989), pp.121-131.

Google Scholar

[19] D. J. Frew, M. J. Forrestal, J. D. Cargile, International Journal of Impact Engineering. Vol. 32 (2006), pp.1584-1594.

Google Scholar

[20] Q. M. Li, S. R. Reid, A. M. Ahmad-Zaidi, Nuclear Engineering and Design. Vol. 236 (2006), pp.1140-1148.

Google Scholar

[21] M. Nili, V. Afroughsabet, Construction and Building Materials. Vol. 24 (2009), pp.927-933.

Google Scholar

[22] G. D. Manolis, P. J. Gareis, A. D. Tsonos, J. A. Neal, Cement and Concrete Composites. Vol. 19 (1997), pp.341-349.

DOI: 10.1016/s0958-9465(97)00030-9

Google Scholar

[23] H. Mazaheripour, S. Ghanbarpour, S. H. Mirmoradi, I. Hosseinpour, Construction and Building Materials. Vol. 25 (2011), pp.351-358.

DOI: 10.1016/j.conbuildmat.2010.06.018

Google Scholar

[24] A. M. Alhozaimy, P. Soroushian, F. Mirza, Cement and Concrete Composites. Vol. 18 (1996), pp.85-92.

DOI: 10.1016/0958-9465(95)00003-8

Google Scholar

[25] S. Kakooei, H. M. Akil, M. Jamshidi, J. Rouhi, Construction and Building Materials. Vol. 27 (2012), pp.73-77.

DOI: 10.1016/j.conbuildmat.2011.08.015

Google Scholar

[26] A. Bentur, S. Mindess, G. Vondran, International Journal of Cement Composites and Lightweight Concrete. Vol. 11 (1989), pp.153-158.

DOI: 10.1016/0262-5075(89)90087-0

Google Scholar

[27] N. Narayanan, K. Ramamurthy, Cement and Concrete Composites. Vol. 22 (2000), pp.321-329.

Google Scholar

[28] A. Behnood, M. Ghandehari, Fire Safety Journal. Vol. 44 (2009), pp.1015-1022.

Google Scholar

[29] M. Ali, A. Qamhiyah, D. Flugrad, M. Shakor, Structure Under Shock and Impact IX. Vol. 87 (2006), pp.413-429.

Google Scholar

[30] M. R. Jones, L. Zheng, ICE Publishing. Vol. 65 (2012), p.209 –219.

Google Scholar