[1]
S. Song, S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials. Vol. 18, (2004), pp.669-673.
DOI: 10.1016/j.conbuildmat.2004.04.027
Google Scholar
[2]
M. Mbessa, J. Pera, Durability of high-strength concrete in ammonium sulfate solution. Cement and Concrete Research. Vol. 31, (2001), pp.1227-1231.
DOI: 10.1016/s0008-8846(01)00553-1
Google Scholar
[3]
X. Lu, C-T. T. Hsu, Behavior of high strength concrete with and without steel fiber reinforcement in triaxial compression. Cement and Concrete Research 26, (2006), pp.1679-1685.
DOI: 10.1016/j.cemconres.2006.05.021
Google Scholar
[4]
F.P. Zhou, B.I.G. Barr, F.D. Lydon, Fracture mechanical properties of high strength concrete with varying silica fume contents and aggregates. Cement and Concrete Research. Vol. 25, (1994), pp.543-552.
DOI: 10.1016/0008-8846(95)00043-c
Google Scholar
[5]
A. Sivakumar, M. Santhanam, Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cement and Concrete Composites. Vol. 29, (2007), pp.603-608.
DOI: 10.1016/j.cemconcomp.2007.03.006
Google Scholar
[6]
H. Okamura, M. Ouchi, Self-compacting concrete. Journal of Advanced Concrete Technology. Vol. 1, No. 1, (2003), pp.1-5.
Google Scholar
[7]
T.R. Naik, R. Kumar, B.W. Ramme, F. Canpolat, Development of high-strength, economical self-consolidating concrete. Construction and Building Materials. Vol. 30, (2012), pp.463-469.
DOI: 10.1016/j.conbuildmat.2011.12.025
Google Scholar
[8]
P-C. Aitcin, Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research. Vol. 30, (2000), pp.1349-1359.
DOI: 10.1016/s0008-8846(00)00365-3
Google Scholar
[9]
M. Schmidt, E. Fehling, Paper on ultra high performance concrete: research, development and application in Europe, International Symposium, Germany, (2004).
Google Scholar
[10]
G.D. Schutter, P.J.M. Bartos, P. Domone, J. Gibbs, Self-compacting concrete, Whittles Publishing, United Kingdom, (2008).
Google Scholar
[11]
Y. L. Voo, W. K. Poon, Journal on flexural and shear strength of steel fiber reinforced ultra-high performance concrete (SFR-UHPC) prestressed beams, International Conference on Construction and Building Technology, Malaysia, (2008).
Google Scholar
[12]
Y.L. Voo, S.J. Foster, How green are ultra high performance ductile concrete bridges? 34th Conference on Our World in Concrete and Structures. Singapore: 12-18 August, (2009).
Google Scholar
[13]
C. Qian, I. Patnaikumi, Properties of high-strength steel fiber-reinforced concrete beams in bending. Cement and Concrete Compostes 21, (1999), pp.73-81.
DOI: 10.1016/s0958-9465(98)00040-7
Google Scholar
[14]
B.A. Ramzi, O.Q. Aziz, Flexural strength of reinforced concrete T-beams with steel fibers. Cement and Concrete Composites. Vol. 21, (1999), pp.263-268.
DOI: 10.1016/s0958-9465(99)00009-8
Google Scholar
[15]
E.G. Nawy, Concrete Construction Engineering Handbook, 2nd ed. Boca Raton: CRC Press, (2008).
Google Scholar
[16]
N. Banthia, K. Chokri, Y. Ohama, S. Mindess, Fiber-Reinforced Cement Based Composites Under Tensile Impact. Advanced Cement Based Materials. Vol. 1, (1993), pp.131-141.
DOI: 10.1016/1065-7355(94)90044-2
Google Scholar
[17]
H. Yan, W. Sun, H. Chan, The effect of silica fume and steel fiber on the dynamic mechanical performance of high-strength concrete. Cement and Concrete Research. Vol. 29, (1999), pp.423-426.
DOI: 10.1016/s0008-8846(98)00235-x
Google Scholar
[18]
W. Khaliq, V. Kodur, Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research. Vol. 41, (2011), pp.1112-1122.
DOI: 10.1016/j.cemconres.2011.06.012
Google Scholar
[19]
P. Tjiptobroto, W. Hansen, Mechanism for Tensile Strain Hardening in High Performance Cement-based Fiber Reinforced Composites. Cement and Concrete Composites. Vol. 13, (1991), pp.265-273.
DOI: 10.1016/0958-9465(91)90032-d
Google Scholar
[20]
H. Okamura, Self-compacting high performance concrete. ACI Concrete International. Vol. 19, (1997), pp.50-54.
Google Scholar
[21]
Y. Wang, S. Backer, Toughness determination for fibre reinforced concrete. The International Journal of Cement and Lightweight Concrete. Vol. 11, No. 1, (1989).
DOI: 10.1016/0262-5075(89)90031-6
Google Scholar
[22]
JSCE, Recommendations for design and construction of ultra high strength fiber reinforced concrete structures (draft). Concrete Committee of Japan Society of Civil Engineers (JSCE), JSCE Guidelines for Concrete, No. 9, ISBN: 4-8106-0557-4, 106. September, (2006).
DOI: 10.2208/jscejmcs.77.3_119
Google Scholar
[23]
A.S. Kareem-Palanjian, R. Naranyanan, Paper on Factors Influencing the Workability of Steel-Fiber Reinforced Concrete: Part 1. (1982).
Google Scholar
[24]
A.S. Kareem-Palanjian, R. Naranyanan, Paper on Factors Influencing the Workability of Steel-Fiber Reinforced Concrete: Part 2. (1983).
Google Scholar
[25]
P. Rossi, N. Harrouche, Paper on Mix Design and Mechanical Behaviour of Some Steel-Fiber Reinforced Concretes used in Reinforced Concrete Structure. Materials of Structures. Vol. 1, No. 23, (1990), p.256– 266.
DOI: 10.1007/bf02472199
Google Scholar
[26]
A. Zingg, F. Winnefeld, L. Holzer, J. Pakusch, S. Becker, R. Figi, L. Gauckler, Interaction of polycarboxylate-based superplasticizers with cements containing different C3A amounts. Cement & Concrete Composites 31, (2009), p.153–162.
DOI: 10.1016/j.cemconcomp.2009.01.005
Google Scholar
[27]
A.M. Caladarone, High-strength concrete. Taylor & Francis Gruo, London and New York, (2008).
Google Scholar
[28]
V. Sivasundaram, C.G. Carette, V.M. Malhorta, Long-term strength development of high-volume fly ash concrete. Cement & Concrete Composites. Vol. 12 (4), (1990), pp.263-270.
DOI: 10.1016/0958-9465(90)90005-i
Google Scholar
[29]
H. Toutanji, N. Delatte, S. Aggoun, R. Duval, A. Dan, Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cement & Concrete Research. Vol. 34 (2), (2004), pp.311-319.
DOI: 10.1016/j.cemconres.2003.08.017
Google Scholar
[30]
F. Nuruddin, N. Shafiq, N.L.M. Kamal, Microwave Incinerated Rice Husk Ask (MIRHA) Concrete: A new material in the construction industry. UK Malaysia Engineering Conference 2008, 14-15 July 2008, University College London, London.
DOI: 10.4028/www.scientific.net/amm.567.434
Google Scholar
[31]
A.P. Singh, D. Singhal, Permeability of steel fibre reinforced concrete influence of fibre Parameters. Procedia Engineering 14, (2011), pp.2823-2829.
DOI: 10.1016/j.proeng.2011.07.355
Google Scholar
[32]
D.H. Lim, B.H. Oh, Experimental and theoretical investigation on the shear of steel fibre Reinforced concrete beams. Engineering Structures 21, (1999), pp.937-944.
DOI: 10.1016/s0141-0296(98)00049-2
Google Scholar
[33]
F. Köksal, F. Altun, I. Yugit, Y. Sahin, Combined effect of silica fume and steel fiber on the mechanical properties of high strength concrete. Construction and Building Materials 22, (2008), pp.1874-1880.
DOI: 10.1016/j.conbuildmat.2007.04.017
Google Scholar
[34]
C. Huang, G. Zhao, Properties of steel fibre reinforced concrete containing larger coarse aggregate. Cement & Concrete Composites 17, (1995), pp.199-206.
DOI: 10.1016/0958-9465(95)00012-2
Google Scholar
[35]
M. Nili, V. Afroughsabet, Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. International Journal of Impact Engineering 37, (2010), pp.879-886.
DOI: 10.1016/j.ijimpeng.2010.03.004
Google Scholar
[36]
A.M. Brandt, Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil enginering. Composite Structures. Vol. 86, (2008), pp.3-9.
DOI: 10.1016/j.compstruct.2008.03.006
Google Scholar