[1]
O.A. Abdulkareem, A.M. Mustafa Al-Bakri, H. Kamarudin, I. Khairul Nizar, A study on the synthesis of fly ash-based lightweight aggregate geopolymer concrete, Advanced Science Letters, Vol. 19, pp.282-285, (2013).
DOI: 10.1166/asl.2013.4720
Google Scholar
[2]
M. Mouli, H. Khelafi, Performance characteristics of lightweight aggregate concrete containing pozzolan, Building and Environment, Vol. 43, pp.31-36, (2008).
DOI: 10.1016/j.buildenv.2006.11.038
Google Scholar
[3]
J. Davidovits, Chemistry of geopolymeric systems, terminology, Proc. International Conference on geopolymers, Geopolymer '99 International conference, Geopolymer Institute, France, 1999, p.9–40.
Google Scholar
[4]
K. Yang, J. Song, J. Lee, Properties of alkali-activated mortar and concrete using lightweight aggregate, Journal of Materials and Structures, Vol. 43, pp.403-416, (2010).
DOI: 10.1617/s11527-009-9499-6
Google Scholar
[5]
Z. Li, Z. Ding, Y. Zhang, Development of sustainable cementitious materials, International Workshop on Sustainable Development and Concrete Technology, edited by K. Wang, Beijing, China, May, 2004, pp.20-21.
Google Scholar
[6]
S. Wallah and B. Rangan, Low-calcium fly ash based geopolymer concrete: Long-term properties, Research Report GC 2, Curtin University of Technology, Perth, Australia, (2006).
Google Scholar
[7]
J. Gourley and G. Johnson, Developments in geopolymer precast concrete, Proc. 4th World Congress geopolymer, Geopolymer Institute, France, 2005, pp.133-137.
Google Scholar
[8]
ACI Committee 211. 2-98, Standard practice for selecting proportions for structural lightweight concrete, USA. (2004).
Google Scholar
[9]
CEN/TC 104. EN 12390-3, Testing hardened concrete-part 3: compressive strength of testing specimens, Brussels; (2009).
Google Scholar
[10]
D.L.Y. Kong, J.G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cement and Concrete Research, Vol. 40, pp.334-339, (2010).
DOI: 10.1016/j.cemconres.2009.10.017
Google Scholar
[11]
A.M. Rashad, S.R. Zeedan, The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load, Construction and Building Materials, Vol. 25, pp.3098-3107, (2011).
DOI: 10.1016/j.conbuildmat.2010.12.044
Google Scholar
[12]
O.A. Abdulkareem, A.M. Mustafa Al-Bakri, H. Kamarudin, I. Khairul Nizar, Alteration in the microstructure of fly ash geopolymers upon exposure to elevated temperatures, Advance Material Research (Accepted).
DOI: 10.4028/www.scientific.net/amr.795.201
Google Scholar
[13]
W.D. Rickard, J. Temuujin, A. van Riessen, Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. Journal of Non-Crystalline Solids; Vol. 358, pp.1830-1839. (2012).
DOI: 10.1016/j.jnoncrysol.2012.05.032
Google Scholar
[14]
J.L. Provis, C.Z. Yong, P. Duxson, J.S.J. van Deventer, Correlation mechanical and thermal properties of sodium silicate-fly ash geopolymers, Journal of Colloids Surfaces A, Vol. p.336: 57-63, (2009).
DOI: 10.1016/j.colsurfa.2008.11.019
Google Scholar
[15]
T. Uygunoğlu, I.B. Topçu, Thermal expansion of self-consolidating normal and lightweight aggregate concrete at elevated temperature, Construction and Building Materials, Vol. 23, pp.3063-3069, (2009).
DOI: 10.1016/j.conbuildmat.2009.04.004
Google Scholar
[16]
Ö. Andiç-Çakır, S. Hizal, Influence of elevated temperatures on the mechanical properties and microstructure of self-consolidating lightweight aggregate concrete. Construction and Building Materials, Vol. 34, pp.575-583, (2012).
DOI: 10.1016/j.conbuildmat.2012.02.088
Google Scholar