Effect of Parawood Ash on Drying Shrinkage, Compressive Strength and Microstructural Characterization of Metakaolin-Based Geopolymer Mortar

Article Preview

Abstract:

Drying shrinkage, compressive strength and microstructural analysis of metakaolin based geopolymers partial replacement with Parawood ash was investigated. It was involved different SiO2/Al2O3 and CaO/SiO2 ratios. Characterization of geopolymer mortar was determined on drying shrinkage, compressive strength, mineral phases and microstructure was analysed by X-ray diffraction and scanning electron microscopy techniques. Test result of highest compressive strength was about 71 MPa at 6-h (4-h in oven at 80oC and 2-h ambient temperature). Voids-cement ratio is the most effect on the unconfined compressive strength of this metakaolin geopolymer mortar.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 594-595)

Pages:

411-415

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Songpiriyakij, T. Kubprsit, C. Jaturapitakkul and P. Chindaprasirt: Construct Build Mater; Vol. 24 (2010), pp.236-240.

Google Scholar

[2] A Nazari, A. Bagheri and S. Riahi: Mater Sci. Eng. A. Vol. 528 (2011), pp.7395-7401.

Google Scholar

[3] S. Riahi and A. Nazari: Ceram. Inter. Vol. 38 (2012), pp.4467-4476.

Google Scholar

[4] J.H. Chen, J.S. Huang and Y.W. Chang: Cement Concr. Com. Vol. 33 (2011), pp.602-610.

Google Scholar

[5] T. Bakharev: Cem. Concr. Res. Vol. 35 (2005), p.658–670.

Google Scholar

[6] V. Sata, A. Sathonsaowaphak and P. Chindaprasirt: Cem. Concr. Comp. Vol. 34 (2012), pp.700-708.

Google Scholar

[7] F.J. Silva, A.F. Mathias and C. Thaumaturgo: Geopolymer 1999 Conference, June 30 to July 2, 1999, Institute Geopolymer, Saint-Quentin, France, pp.97-106.

Google Scholar

[8] P.D. Silva, K. Sagoe-Crenstil and V. Sirivivatnanon: Cem. Concr. Res. Vol. 37 (2007), pp.512-518.

Google Scholar

[9] P.D. Silva and K. Sagoe-Crenstil: Cem. Concr. Res. Vol. 38 (2008), pp.870-878.

Google Scholar

[10] S. Songpiriyakij, T. Kubprasit, C. Jaturapitakkul and P. Chindaprasirt: Construct. Build. Mater. Vol. 24 (2010), pp.236-240.

Google Scholar

[11] P. Chindaprasirt, P.D. Silva, K. Sagoe-Crentsil and S. Hanjitsuwan: J. Mater. Sci. Vol. 47 (2012), pp.4876-4883.

DOI: 10.1007/s10853-012-6353-y

Google Scholar

[12] T. Chareera A thesis of Doctor of Philosophy in Civil Engineering. Khon Kaen Univerity, (2008).

Google Scholar

[13] Zuhua Z, Y. Xiao, Z. Huajun, C. Yue: Applied Clay Science. Vol. 43(2) (2009), p.218–223.

DOI: 10.1016/j.clay.2008.09.003

Google Scholar

[14] F. Winnefeild, A. Leemann, M. Lucuk, P. Svoboda and M. Neuroth: Constr. Build. Mater. Vol. 24 (2010), 1086–1093.

Google Scholar

[15] J. Temuujin, A.V. Riessen and R.J. Williams, Hazard. Mater. Vol. 167 (2009), pp.82-88.

Google Scholar

[16] E. Alvarez-Ayuso, X. Querol, F. Plan, A. Alastuey, N. Moreno, M. Izquierdo, O. Font, T. Moreno, S. Diez, E. Vazquez and M. Barra: J. Hazard. Mater. Vol. 154 (2008), p.175–183.

DOI: 10.1016/j.jhazmat.2007.10.008

Google Scholar