Fatigue Behaviour of S235JR Steel after Surface Frictional-Mechanical Treatment in Corrosive Environment

Article Preview

Abstract:

In the paper low (LCF) and high cycle fatigue (HCF) behavior of the S235JR low alloyed steel after surface frictional-mechanical treatment in a corrosive environment (3.5 % NaCl ) has been presented. The treatment was used in order to improve mechanical and fatigue properties of the steel Obtained research results indicate an insignificant improvement of mechanical and service properties of the strengthened steel under the conditions of corrosion at constant load. Under variable loads and operating corrosion, fatigue strength results of the steel do not unequivocally confirm a favourable effect of the applied treatment. It is particularly noticeable in the range of low-cycle fatigue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-112

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zieliński, J. Ćwiek, S. Rymkiewicz, W. Serbiński Investigations and modeling of material degradation under influence of action of mechanical and corrosion factors,, Problems of Eksploitation, 4 (2003) 29-36 (in Polish).

Google Scholar

[2] Nandan R., DebRoy T., Bhadeshia H.K., Recent Advances in friction stir welding – process, weldment, structure and properties, Progress in Materials Science, 53 (2008) 980-1023.

DOI: 10.1016/j.pmatsci.2008.05.001

Google Scholar

[3] D. Kocańda, A. Górka, New techniques for ,friction stir welding of materials, Bull. WAT, 2, (2010) 395-411 (in Polish).

Google Scholar

[4] C.S. Paglia, R.G. Buchheit, A look in the corrosion of aluminium alloy friction stir welds, Scrypta Materialia, 58 (2008) 383-387.

DOI: 10.1016/j.scriptamat.2007.10.043

Google Scholar

[5] R.S. Mishra, Z. Y. Ma, Friction stir welding and processing, J. Mater. Sci. Engng, 50, (2005) 1-78.

Google Scholar

[6] C. Hamilton, S. Dymek, O. Senkov, Thermal modeling of friction stir welding of Sc-modified Al-Zn-Mg-Zu alloy, Computer Methods in Materials Science , 9 (2009) 416-423.

DOI: 10.1002/9781118062302.ch17

Google Scholar

[7] I. Kalemba, S. Dymek, C. Hamilton, M. Wróbel, M. Blicharski, Exfoliation corrosion behavior of friction stir welded AA7136-T76 extrusions. Kovove Mater. 47 (2009) 101-107

DOI: 10.1007/978-3-319-48173-9_12

Google Scholar

[8] Zhou C., Yang X., Luan G., Investigation of microstructures and fatigue properties of friction stir welded Al-Mg alloy, Materials Chemistry and Physics, 98 (2006) 285-290.

DOI: 10.1016/j.matchemphys.2005.09.019

Google Scholar

[9] Zeng R-C., Chen J., Dietzel W., Zettler R., et al., Corrosion of friction stir welded magnesium alloy AM50, Corrosion Science, 51 (2009) 1738-1746.

DOI: 10.1016/j.corsci.2009.04.031

Google Scholar

[10] S.Y. Liu, J.D. Hu, Y. Yang, Z.X. Guo, H.Y. Wang, Microstructure analysis of magnesium alloy melted by laser irradiation. Applied Surface Science, 252 (2005) 1723-1731.

DOI: 10.1016/j.apsusc.2005.03.110

Google Scholar

[11] Marrow T.J., King J.E., Microstructural and environmental effect on fatigue crack propagation in duplex stainless steel, J. Fatigue a. Fract. Mat. Struct. 17 (1994) 761-771.

DOI: 10.1111/j.1460-2695.1994.tb00807.x

Google Scholar

[12] Cui L., Fuji H., Tsuji N., Nogi K., Friction stir welding of a high carbon steel, Scripta Materialia, Vol. 56, 2007, pp.637-640.

DOI: 10.1016/j.scriptamat.2006.12.004

Google Scholar

[13] H.K.D.H. Bhadeshia, T. DebRoy, Crittical assessment: friction stir welding of steels. Science and Technology of Joining, 14 2009 193-186

DOI: 10.1179/136217109x421300

Google Scholar

[14] Project PBG nr N N501 0097 33 "Estimation of the influence of surface frictional-mechanical treatment of hull steel on its exploitative properties in corrosive environmental. Warsaw, MUT, 2011.

Google Scholar

[15] D. Kocańda, H. Nykyforchyn, J. Torzewski, W. Jurczak, K. Świątek, Exploitative properties of a low alloyed steel after surface frictional-mechanical treatment in see water environmental. XIII Conf. Fracture Mechanics, Opole, 2011.

Google Scholar

[16] D. Kocańda, V. Hutsaylyuk, T. Ślęzak T., J. Torzewski, H. Nykyforchyn, V. Kyryliv, Fatigue crack growth rates of S235 and S355 steels after friction stir processing, J. Materials Science Forum (2012) 203-210.

DOI: 10.4028/www.scientific.net/msf.726.203

Google Scholar