[1]
K. Smith., P. Watson, T. Topper, A stress-strain function for the fatigue of metals. J. Materials. 5 (1970) 767-779.
Google Scholar
[2]
E. Macha, A review of energy-based multiaxial fatigue failure criteria, The Archive of Mechanical Engineering. XLVIII (2001) 71-101.
Google Scholar
[3]
D. Rozumek, Z. Marciniak., C. T. Lachowicz, The energy approach in the calculation of fatigue lives under non-proportional bending with torsion, Int. J. of Fatigue. 32 (2010) 1343-1350.
DOI: 10.1016/j.ijfatigue.2010.02.007
Google Scholar
[4]
D. Rozumek, Z. Marciniak, Fatigue properties of notched specimens made of FeP04 steel, Materials Science. 47 (2012) 462-469.
DOI: 10.1007/s11003-012-9417-x
Google Scholar
[5]
S.S. Manson, Behaviour of materials under conditions of thermal stress, NACA TN-2933 (1953).
Google Scholar
[6]
L.F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal, Trans. ASME 76 (1954) 931-950.
DOI: 10.1115/1.4015021
Google Scholar
[7]
O.H. Basquin, The experimental law of endurance test, Proc. ASTM, Phildelphia, 10 (1910) 625-630.
Google Scholar
[8]
W. Będkowski, E. Macha, J. Słowik, The fatigue characteristics of materials with the controlled strain energy density parameter, The Archive of Mechanical Engineering. LI (2004) 437-451.
Google Scholar
[9]
E. Macha, J. Słowik, R. Pawliczek, Energy based characterization of fatigue behavior of cyclically unstable materials, Solid State Phenomena. 147-149 (2009) 512-517.
DOI: 10.4028/www.scientific.net/ssp.147-149.512
Google Scholar
[10]
L. Kasprzyczak, E. Macha, Z. Marciniak, Energy parameter control system of strength machine for material tests under cyclic bending and torsion, Solid State Phenomena. 198 (2013) 489-494.
DOI: 10.4028/www.scientific.net/ssp.198.489
Google Scholar
[11]
H. Achtelik, D. Rozumek, Z. Marciniak, E. Macha, C.T. Lachowicz, Patent PL395964-A1. (2013)
Google Scholar