Particleboards with Agricultural Wastes: Sugar Cane Bagasse and Reforestation Wood

Article Preview

Abstract:

In this paper, it was consider the study of the use of sugarcane bagasse and wood particles, residues from the agricultural and the furniture industry, in order to add value to such materials. To add value to these materials it will be utilized in the manufacturing of hybrid panels consisting of wood particles and sugarcane bagasse in certain proportions (20%, 40% and 60%). For the production it was used the bi-component polyurethane resin based on castor oil. Analysis of the products was established based on the physical-mechanical standard NBR 14.810:2006. The hybrid panels were analyzed according to the data obtained in relation to the American standard ANSI A208.1-1999, in order to determine the best treatment for the possible use as a lining in agricultural buildings. Moreover, the hybrid panels were contrasted with panels of other formulations, with similar density. It was evident that the treatment constituting of 40% of sugar cane bagasse and 60% of wood particles had the best physical-mechanical, and showed a potential for the use in non-structural applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

667-676

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] CONAB – Boletim Companhia Nacional de Abastecimento (2011).

Google Scholar

[2] CONAB – Boletim Companhia Nacional de Abastecimento (2009).

Google Scholar

[3] TEIXEIRA, D. E.; COSTA, F.; SANTANA, M. A. E. Aglomerados de bagaço de cana-de- açúcar: resistência natural ao ataque de fungos. Scientia Forestalis, Piracicaba, n. 5, pp.29-34, (1997).

Google Scholar

[4] IWAKIRI, S.; SHIMIZU, J.; SILVA, J C.; MENESSI, C. H. S. D.; PUEHRINGHER, A.; VENSON, I. & LARROCA, C. Produção de painéis de madeira aglomerada de Grevillea robusta A. Cunn. ex R. Br. Revista Árvore, 2004. v. 28, pp.883-887.

DOI: 10.1590/s0100-67622004000600013

Google Scholar

[5] HILLIG, E. Qualidade de chapas aglomeradas estruturais, fabricadas com madeiras de Pinus, Eucalipto e Acácia negra, puras ou misturadas, coladas com tanino- formaldeido. Santa Maria: UFSM, 2000. (Dissertação de Mestrado, Universidade Federal de Santa Maria, Brasil).

DOI: 10.5902/198050981701

Google Scholar

[6] RAMOS, R. D. et Al. Fabricação de painéis de partículas a base de madeira da espécie pinus spp e resina poliuretana de óleo de mamona. XL Congresso Brasileiro de Engenharia Agrícola, 2011, Cuiabá – MT. Anais.

DOI: 10.11606/t.74.2016.tde-16032016-161005

Google Scholar

[7] SARTORI, D.; FIORELLI, J.; SAVASTANO JUNIOR, H.; LAHR, F. A. R.; NASCIMENTO, M. F. Painéis de partículas aglomeradas à base de bagaço de cana-de-açúcar e resina poliuretana de óleo de mamona. In: 1º CONGRESSO IBERO-LATINOAMERICANO DA MADEIRA NA CONSTRUÇÃO, 2011, Coimbra-Portugal. v. 01. p.01.

DOI: 10.11606/t.74.2016.tde-16032016-161005

Google Scholar

[8] MALONEY, T.M. Modern Particleboard & Dry-process fiberboard manufacturing. San Francisco. 1977. 672p.

Google Scholar

[9] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS - NBR 14810 - 3 (2006). Chapas de madeira aglomerada. Parte 3: métodos de ensaio. ABNT. Rio de Janeiro, 2006. 51p.

Google Scholar

[10] HUNT, M. O. et al. Feasibility of manufacturing flakeboard roof decking from hardwoods., Particleboard, 12th, Proceedings, Washington State University, 1978, pp.17-45.

Google Scholar

[11] INSTITUTE - ANSI A208. 1 (1999). Mat-formed wood particleboard: Specification. National Particleboard Association. Gaithersburg.

Google Scholar

[12] PASSOS, P. R. A. Destinação sustentável de cascas de coco (cocos nucifera) verde: obtenção de telhas e chapas de partículas. 2005. 186 f. Tese (Doutorado em Engenharia) – Universidade Federal do Rio de Janeiro, Rio de Janeiro.

DOI: 10.22239/2317-269x.01977

Google Scholar

[13] TANGJUANK, S. e KUMFU, S. Particle boards from papyrus fibers as thermal insulation. Journal of Applied Sciences, v. 11, n. 14, pp.2640-2645, (2011).

DOI: 10.3923/jas.2011.2640.2645

Google Scholar

[14] BEKTAS, I.; GULER, C.; KALAYCIOGLU, H.; MENGELOGLU, F.; NACAR, M. The manufacture of particleboards using sunflower stalks (Helianthus annuus L. ) and poplar wood (Populus alba L. ). J. Compos. Mater, v. 39, n. 5, p.467–473, (2005).

DOI: 10.1177/0021998305047098

Google Scholar

[15] GULER, C.; COPUR, Y.; TASCIOGLU, C. The manufacture of particleboards using mixture of peanut (Arachis hypoqaea) and European Black pine (Pinus nigra Arnold) wood chips. Bioressource Technology, v. 99, p.2893–2897, (2007).

DOI: 10.1016/j.biortech.2007.06.013

Google Scholar

[16] TANGJUANK, S. Thermal insulation and physical properties of particleboards from pineapple leaves. International Journal of Physical Sciences, v. 6, n. 19, pp.4528-4532, (2011).

Google Scholar

[17] SAMPATHRAJAN, A.; VIJAYARAGHAVAN, N. C.; SWAMINATHAN, K. R. Mechanical and thermal properties of particle boards made from farm residues. Bioresource Technology, v. 40, pp.249-251, (1991).

DOI: 10.1016/0960-8524(92)90151-m

Google Scholar

[18] XU, J. et al. Manufacture and properties of low-density binderless particleboard from kenaf core. J. Wood Sci., v. 50, pp.62-67, (2004).

DOI: 10.1007/s10086-003-0522-1

Google Scholar

[19] PANYAKAEW, S. e FOTIOS, S. New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, (2011).

DOI: 10.1016/j.enbuild.2011.03.015

Google Scholar