Synthesis of (La0.95Eu0.05)2O3 Red Phosphors with Hydroxide Nanowires as the Precursor: Template-Free Hydrothermal Processing and Photoluminescent Properties

Article Preview

Abstract:

Ln (OH)3(Ln=La0.95Eu0.05) nanowires have been successfully synthesized through hydrothermal reaction, without using any template, from mixed solutions of the component nitrates. It was shown that neither solution pH (7.5-13) nor hydrothermal temperature (120 and 150 °C) significantly influences the phase structure and particle morphology of the product. The resultant Ln (OH)3 nanowires are of uniform dimension and good dispersion. A homogeneous Ln2O3 solid solution was yielded by calcining the hydroxide nanowires in the air at 800 oC. Under 285 nm excitation, the Ln2O3 phosphor exhibits the characteristic red emission of Eu3+ at ~630 nm and show emission behaviors clearly dependent on the calcination temperature, which were investigated in detail.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

1021-1027

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Alivisatos, Science. 271 (1996) 933-937.

Google Scholar

[2] Y.N. Xia, P.D. Yang, Y.G. Sun, et al., Adv. Mater. 15 (2003) 353-389.

Google Scholar

[3] C. Burda, X.B. Chen, R. Narayanan, M.A. EI-sayed, Chem. Rev. 105 (2005) 1025-1102.

Google Scholar

[4] J.T. Zhang, X.L. Li, X.M. Sun, Y. Li, J. Phys. Chem. B. 109 (2005) 12544-12548.

Google Scholar

[5] R.C. Jin, Y.W. Cao, C.A. Mirkin, et al., Science, 294 (2001) 1901-(1903).

Google Scholar

[6] A. Ghezelbash, M.B. Sigman, B.A. Jr Korgel, Nano Lett. 4 (2004) 537-542.

Google Scholar

[7] G. Li, Z. Hou, C. Peng, et al., Adv. Funct. Mater. 20 (2010) 3446-3456.

Google Scholar

[8] H. Zhang, H.W. Song, L.L. Han, et al., J. Nanosci. Nanotechno. 10 (2010) 2070-(2076).

Google Scholar

[9] M. Yada, M. Mihara, S. Mouri, et al., Adv. Mater. 14 (2002) 309-313.

Google Scholar

[10] G.S. Wu, L.D. Zhang, B.C. Cheng, et al., J. Am. Chem. Soc. 126 (2004) 5976-5977.

Google Scholar

[11] T.K. Tseng, J. Choi, L.G. Jacobsohn, et al., Appl. Phys. A 100 (2010) 1137-1142.

Google Scholar

[12] C. Peng, G.G. Li, X.J. Kang, et al., J. Colloid Interf. Sci. 355 (2011) 89-95.

Google Scholar

[13] S. Bernal, J.J. Calvino, M.A. Cauqui, et al., Catal. Today 50 (1999) 175-206.

Google Scholar

[14] D. Rutzinger, C. Bartsch, M. Doerr, et al., J. Solid State Chem. 183 (2010) 510-520.

Google Scholar

[15] G. Jia, Y.H. Zheng, K. Liu, et al., J. Phys. Chem. 113 (2009) 153-158.

Google Scholar

[16] G. Li, C. Peng, C. Zhang, et al., Inorg. Chem. 49 (2010) 10522-10535.

Google Scholar

[17] H. Liu, L. Wang, S. Chen, Mater. Lett. 61 (2007) 3629-3631.

Google Scholar

[18] G.G. Li, C.X. Li, Z.H. Xu, et al., Cryst Eng Comm, 12 (2010) 4208-4216.

Google Scholar

[19] X. Zhang, P.P. Yang, D. Wang, et al., Cryst. Growth Des. 12 (2012) 306-312.

Google Scholar

[20] J.A. Gadsden. Infrared spectra of minerals and related inorganic compounds. Newton (MA): Butterworth; (1975).

Google Scholar

[21] E. Matijevic, W.P. Hsu, J. Colloid Interf. Sci. 118 (1987) 506-523.

Google Scholar

[22] K. Nakamoto. Infrared spectra of inorganic and coordination compounds. New York: John Wiley & Sons; (1963).

Google Scholar

[23] H.Q. Liu, L.L. Wang, S.Q. Chen, B.S. Zou, J. Lumin. 126 (2007) 459-463.

Google Scholar

[24] J. Liu, X.Y. Fei, X.B. Yu, et al., J. Non-cryst. Solids 353 (2007) 4697-4701.

Google Scholar

[25] H.Q. Liu, L.L. Wang, W.Q. Huang, Z.W. Peng, Mater. Lett. 61 (2007) 1968-(1970).

Google Scholar

[26] J.K. Park, S.M. Park, C.H. Kim, et al., J. Mater. Sci. Lett. 20 (2001) 2231-2232.

Google Scholar

[27] S.P. Wang, Y.L. Zhao, J.J. Chen, et al., Superlattice. Microst. 47 (2010) 597-605.

Google Scholar