Co-Precipitation Synthesis and Photoluminescence Properties of Ce3+ Activated Terbium Aluminum Garnet (Tb1-xCex)3Al5O12 (0≤x≤0.05) Yellow Phosphors

Article Preview

Abstract:

Ce3+ activated terbium aluminum garnet ((Tb1-xCex)3Al5O12, 0≤x≤0.05) phosphors have been converted from their precursors synthesized via co-precipitation from mixed solutions of aluminum and rare earth nitrates with ammonium hydrogen carbonate (AHC) as the precipitant. Detailed characterizations of the precursors and the phosphor oxides were performed by the combined techniques of X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetry/thermogravimetry (DSC/TG), and photoluminescence spectroscopy. The co-precipitated precursors possess a general composition of (NH4)x(Tb,Ce)3Al5(CO3)y(OH)z·nH2O, and the particles, having diameters of about 50nm, are well dispersed. Calcining the precursors at 1000°C for 4 h in the air and then reducing in a hydrogen atmosphere at 1000°C for 2 h yielded a phase pure garnet solid-solution of (Tb1-xCex)3Al5O12. The cubic lattice of garnet allows the Ce3+ activators to reside at the dodecahedral interstitial sites. The resultant garnet phosphors with various Ce3+ contents exhibit nearly identical positions of the PLE/PE bands, but significantly different intensities. Upon blue-light excitation at 470nm, the garnet phosphors exhibit broad band emissions peaking at 560nm. The garnet phosphors show a luminescence quenching concentration of 1.5at% for Ce3+.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

1028-1033

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.B. Rubinstein, L.G. Van Uitert and W.H. Grodkiewicz, Magneto Optical Properties of Rare Earth (III) Aluminum Garnets, J. Appl. Phys., 35, (1964)3069.

DOI: 10.1063/1.1713182

Google Scholar

[2] A.H. Cooke, T.L. Thorp and M.R. Wells, The magnetic susceptibilities of some rare-earth garnets, Proc. Phys. Soc. vol., 92, (1967).

DOI: 10.1088/0370-1328/92/2/316

Google Scholar

[3] A. GavignetTillard, J. Hammann, Phase Diagram of Terbium Aluminum Garnet in a Magnetic Field at 0. 36 K, AIP Conf. Proc., 5, (1972)675.

Google Scholar

[4] S. Ganschow, D. Klimm, P. Reiche and R. Uecker, On the Crystallization of Terbium Aluminium Garnet, Crystal Research and Technology, 34 (1999) 615–619.

DOI: 10.1002/(sici)1521-4079(199906)34:5/6<615::aid-crat615>3.0.co;2-c

Google Scholar

[5] V.I. Chani, A. Yoshikawa, H. Machida and T. Fukuda, (Tb, Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique, Materials Science and Engineering B, 75 (2000) 53–60.

DOI: 10.1016/s0921-5107(00)00382-2

Google Scholar

[6] Yu. Zorenko, V. Gorbenko, T. Voznyak, T. Zorenko, B. Kuklinski, R. Turos-Matysyak and M. Grinberg, Luminescence Properties of Phosphors Based on Tb3Al5O12(TbAG) Terbium–Aluminum Garnet, Optics and Spectroscopy, Vol. 106, No. 3, (2009)365–374.

DOI: 10.1134/s0030400x09030102

Google Scholar

[7] J.K. Park, C.H. Kim, S.H. Park, H.D. Park and S.Y. Choi, Application of strontium silicate yellow phosphor for white light-emitting diodes, Appl. Phys. Lett., 84, (2004)1647.

DOI: 10.1063/1.1667620

Google Scholar

[8] M.G. Craford, Visible LEDs: the trend toward high-power emitters and remaining challenges for solid state lighting, Proc. SPIE 4776, (2002)1.

DOI: 10.1117/12.457111

Google Scholar

[9] H.S. Jang, Y. -H. Won and D.Y. Jeon, Improvement of electroluminescent property of blue LED coated with highly luminescent yellow-emitting phosphors, Appl Phys B, 95, (2009)715–720.

DOI: 10.1007/s00340-009-3484-1

Google Scholar

[10] C.C. Chiang, M.S. Tsai and M.H. Hon, Synthesis and photoluminescent properties of Ce3+ doped terbium aluminum garnet phosphors, Journal of Alloys and Compounds, 431, (2007)298–302.

DOI: 10.1016/j.jallcom.2006.05.068

Google Scholar

[11] I.V. Berezovskaya1, B.I. Zadneprovski, N.I. Poletaev, Yu.A. Doroshenko, N.P. Efryushina, E.V. Zubar and V.P. Dotsenko, Luminescence Properties of Ce3+-Doped Terbium Aluminum Garnet Phosphor Prepared with Use of Nanostructured Reagents, Journal of Nano- and Electronic Physics, Vol. 5, No 1, (2013).

DOI: 10.1016/j.jallcom.2012.09.053

Google Scholar

[12] Y. Chen, J. Wang, M. Gong and Q. Su, Comparative study on the synthesis, photoluminescence and application in InGaN-based light-emitting diodes of TAG: Ce3+ phosphors, Journal of Solid State Chemistry, 180, (2007)1165–1170.

DOI: 10.1016/j.jssc.2007.01.011

Google Scholar

[13] K. Nakamoto, Infrared Spectra of Inorganic & Coordination Compounds [M], New York: John Wiley & Sons, (1963).

Google Scholar

[14] J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds [M], Newton, MA: Butterworth, (1975).

Google Scholar

[15] J. -G. Li, T. Ikegami, J. -H. Lee, and T. Mori, Low-Temperature Fabrication of Transparent Yttrium Aluminum Garnet (YAG) Ceramics without Additives, J. Am. Ceram. Soc., 83.

DOI: 10.1111/j.1151-2916.2000.tb01305.x

Google Scholar

[4] (2000) 961–63.

Google Scholar

[16] J. -G. Li, T. Ikegami, J. -H. Lee, T. Mori, and Y. Yajima, Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant, Journal of the European Ceramic Society, 20, (2000) 2395-2405.

DOI: 10.1016/s0955-2219(00)00116-3

Google Scholar

[17] J.K. Li, J-G. Li, Z.J. Zhang, X.L. Wu, S.H. Liu, X.D. Li, X.D. Sun, and Y. Sakka, Gadolinium Aluminate Garnet (Gd3Al5O12): Crystal Structure Stabilization via Lutetium Doping and Properties of the (Gd1-xLux)3Al5O12 Solid Solutions (x = 0–0. 5), J. Am. Ceram. Soc., 95.

DOI: 10.1111/j.1551-2916.2011.04991.x

Google Scholar

[3] (2012) 931–936.

Google Scholar

[18] J. -G. Li, T. Ikegami, J. H. Lee, and T. Mori, Well-Sinterable Y3Al5O12 Powder from Carbonate Precursor, J. Mater. Res., 15.

Google Scholar

[7] (2000)1514–23.

Google Scholar

[19] X.D. Li, J. -G. Li, Z.M. Xiu, D. Huo, and X.D. Sun, The Effects of Gd3+ Substitution on the Fabrication of Transparent (Y1-xGdx)3Al5O12 Ceramics, J. Am. Ceram. Soc., 93.

DOI: 10.1111/j.1551-2916.2010.03726.x

Google Scholar

[8] (2010) 2229–2235.

Google Scholar

[20] Y.S. Lin, R.S. Liu, and B. M. Cheng, Investigation of the Luminescent Properties of Tb3+-Substituted YAG: Ce, Gd Phosphors, J. Electrochem. Soc., 152, (2005) J41.

DOI: 10.1149/1.1896307

Google Scholar

[21] M.K. Ashurov, A.F. Rakov, R.A. Erzin, Luminescence of defect centers in yttrium–aluminum garnet crystals, Solid State Commun., 120, (2001) 491–494.

DOI: 10.1016/s0038-1098(01)00434-3

Google Scholar