Synthesis and Characterization of Yttria-Doped Mesoporous Zirconia

Article Preview

Abstract:

The yttria-doped mesoporous zirconia was successfully synthesized by evaporation induced self-assembly (EISA) method, and the microstructure and textural properties of the as-made product were studied extensively. The results showed that the as-made product possessed crystallized framework walls and a worm-like mesopore with a narrow pore distribution. The BET specific surface area and pore volume of the as-made product calcined at 500°C are 111 m2/g and 0.16 cm3/g respectively, and the corresponding data changed to 73 m2/g and 0.052 cm3/g after calcined at 700°C, which indicated that the as-made yttria-doped mesoporous zirconia possess a higher thermal stability.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

212-215

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. T. Kresge, M.E. Leonowicz, W. J. Roth, et al., Nature. 359 (1992) 710-712.

Google Scholar

[2] D.Y. Zhao, J.L. Feng, Q.S. Huo, et al., Science. 279 (1998) 548-552.

Google Scholar

[3] F. Huang, Y. Zheng, G.H. Cai, et al., Scripta Mater. 63 (2010) 339–342.

Google Scholar

[4] W.Q. Cai, J.G. Yu, C. Anand, et al., Chem. Mater. 23(2011) 1147–1157.

Google Scholar

[5] K. Niesz, P. Yang, G.A. Somorjai, Chem. Commun. 0(2005)1986–(1987).

Google Scholar

[6] M. Mamak, N. Coombs, G.A. Ozin, Chem. Mater. 13 (2001) 3564-3570.

Google Scholar

[7] M. Mamak, N. Coombs, G.A. Ozin, Adv. Mater. 12 (2000) 198-202.

Google Scholar

[8] E.L. Crepaldi, G.J. de A.A. Soler-Illia, A. Bouchara, et al. Angew. Chem. Int. Ed. 42 (2003) 347-351.

Google Scholar

[9] M. Mamak, N. Coombs, G. Ozin, Adv. Mater. 12 (2000) 198–202.

Google Scholar

[10] M. Mamak, N. Coombs, G. Ozin, J. Am. Chem. Soc. 122 (2000) 8932–8939.

Google Scholar

[11] P. Yang, D. Zhao, D. Margolese, et al., Nature. 396 (1998) 152-155.

Google Scholar

[12] S.K. Das, M.K. Bhunia, A.K. Sinha, A. Bhaumik, J. Phys. Chem. C. 113 (2009) 8918–8923.

Google Scholar

[13] I.M. Hung, K.Z. Fung, D.T. i Hung, M.H. Hon, J Eur Ceram Soc. 26 (2006) 2627-263.

Google Scholar

[14] U. Ciesla, M. Froba, G. Stucky, F. Schuth, Chem. Mater. 11 (1999) 227-234.

Google Scholar

[15] D.J. Suh, T.J. Park, Chem. Mater. 14 (2002) 1452-1454.

Google Scholar

[16] Y. Liu, J. Chen, Y. Sun, Stud. Surf. Sci. Catal. 156 (2005) 249–256.

Google Scholar

[17] K. Cassiers, T. Linssen, V. Meynen, et al., Chem. Commun. 10 (2003) 1178-1179.

Google Scholar

[18] S.G. Liu, H. Wang, J.P. Li, et al., Mater Res Bull. 42 (2007) 171–176.

Google Scholar

[19] V.V. Srdic, M. Winterer, Chem. Mater. 15(2003) 2668-2674.

Google Scholar

[20] P. Li, I.W. Chen, J. Am. Ceram. Soc. 77 (1994) 118-128.

Google Scholar