[1]
L. Fang, W. Dong, F.G. Zheng and M.R. Shen, Effects of Gd substitution on microstructures and low temperature dielectric relaxation behaviors of SrTiO3 ceramics. J. Appl. Phys. 034114 (2012).
DOI: 10.1063/1.4745876
Google Scholar
[2]
E.J. LEE, J. JEONG and Y.H. HAN, Electrical properties of Dy2O3-doped BaTiO3, Jpn. J. Appl. Phys. 43 (2004) 8126-8129.
Google Scholar
[3]
S. Hao, J.L. Li, W. Wang and D.S. Fu, Effects of Ag-La codoping on structure and electrical properties of BaTiO3 powder, Res Chem Intermed. 39 (2013) 2705-2713.
DOI: 10.1007/s11164-012-0791-7
Google Scholar
[4]
Y.C. Zhang, X.H. Wang, J.Y. Kim and Z.B. Tian, High performance BaTiO3-based BME-MLCC nanopowder prepared by aqueous chemical coating method, J. Am. Ceram. Soc. 95 (2012) 1628-1633.
DOI: 10.1111/j.1551-2916.2011.05038.x
Google Scholar
[5]
H. Zhang, X.H. Wang and Z.B. Tian, Fabrication of monodispersed 5-nm BaTiO3 nanocrystals with narrow size distribution via one-step solvothermal route, J. Am. Ceram. Soc. 94 (2011) 3220-3222.
DOI: 10.1111/j.1551-2916.2011.04805.x
Google Scholar
[6]
H.J. Zheng, K.J. Zhu and Q.L. W., Preparation and characterization of monodispersed BaTiO3 nanocrystals by sol-hydrothemal method, Journal of Crystal Growth. 363 (2013) 300-307.
DOI: 10.1016/j.jcrysgro.2012.11.019
Google Scholar
[7]
Y.N. Hao, X.H. Wang and H. Zhang, Sol-gel based synthesis of ultrafine tetragonal BaTiO3, J Sol-Gel Sci Technol (2013) 67: 182-187.
DOI: 10.1007/s10971-013-3065-y
Google Scholar
[8]
N. Masó, M. Prades, H. Beltrán and E. Cordoncillo, Field enhanced bulk conductivity of acceptor-doped BaTi1−xCaxO3−x ceramics, Appl. Phys. Lett. 97 (2010) 062907 1-3.
DOI: 10.1063/1.3476355
Google Scholar
[9]
L.P. Curecheriu, M. Deluca and Z.V. Mocanu, Investigation of the ferroelectric-relaxor crossover in Ce-doped BaTiO3 ceramics by impedance spectroscopy and Raman study, Phase Transitions. 86 (2013) 703-714.
DOI: 10.1080/01411594.2012.726730
Google Scholar
[10]
S. Wang, H. He and H. Su, Effect of Bi2O3 doping on the dielectric properties of medium-temperature sintering BaTiO3-based X8R ceramics, J Mater Sci: Mater Electron. (2013) 24: 2385-2389.
DOI: 10.1007/s10854-013-1106-5
Google Scholar
[11]
D.S. Fu, S. Hao and L.S. Qiang, Influence of penetration time on the structure and conductivity of Sm-modified BaTiO3 powders, J Mater Sci: Mater Electron (2013) 24: 1208-1212.
DOI: 10.1007/s10854-012-0907-2
Google Scholar
[12]
S.K. Jo, J.S. Park and Y.H. Han, Effects of multi-doping of rare-earth oxides on the microstructure and dielectric properties of BaTiO3, Journal of Alloys and Compounds. 501 (2010) 259-264.
DOI: 10.1016/j.jallcom.2010.04.085
Google Scholar
[13]
C.R. Xin, J. Zhang, Y. Liu, Q.L. Zhang, H. Yang and D. Cheng, Polymorphism and dielectric properties of Sc-doped BaTiO3 nanopowders synthesized by sol-gel method, Materials Research Bulletin. 48 (2013) 2220-2226.
DOI: 10.1016/j.materresbull.2013.02.044
Google Scholar
[14]
Y.Z. Hao, Q.L. Zhang and J. Zhang, Enhanced sintering characteristics and microwave dielectric properties of Li2TiO3 due to nano-size and nonstoichiometry effect, J. Mater. Chem. 22 (2012) 23885-23892.
DOI: 10.1039/c2jm33788f
Google Scholar
[15]
N. Ma, B.P. Zhang, W.G. Yang, D. Guo, Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics, Journal of the European Ceramic Society. 32 (2012) 1059-1066.
DOI: 10.1016/j.jeurceramsoc.2011.11.014
Google Scholar