Low Dielectric Loss Polymer-Ceramic Composites for Wireless Temperature Sensation

Article Preview

Abstract:

The low dielectric loss polymer-ceramic composites with high density polyethylene (HDPE) as matrix and BaO-Nd2O3-TiO2 (BNT) as filter for wireless temperature sensation were prepared by an extrusion processing technique. For 30vol % ceramic loaded HDPE, as the ambient temperature increases from 30 to 100 °C, the relative permittivity and loss tangent of the composite vary from 6.25 to 6.09 and from 0.004 to 0.011 respectively, and the temperature coefficient of relative permittivity is -370ppm/°C. By using this composite as the patch microstrip antenna substrate, a simple UHF RFID temperature sensor antenna is fabricated and measured. The experimental results show that a 2MHz/10°C frequency increment can be obtained at 900 MHz in the temperature range from 25 to 100°C.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

752-756

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Qiao, F. Yang, A.Z. Elsherbeni, Read range and sensitivity study of RFID temperature sensors, IEEE AP-S Int. Symp., Chicago, USA, July (2012) 1-2.

DOI: 10.1109/aps.2012.6349257

Google Scholar

[2] M.C. Scardelletti, J.L. Jordan, G.E. Ponchak, Temperature dependency (25–400 oC) of a planar folded slot antenna on alumina substrate, IEEE Antennas and Wireless Propagation Letters, VOL. 7 ( 2008) 489-492.

DOI: 10.1109/lawp.2008.2006068

Google Scholar

[3] K. Chang, Y.H. Kim, Y.J. Kim, Y.J. Yoon, Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive RFID sensing, Electronics Lett., vol. 43, no. 5, Mar. (2007) 7-8.

DOI: 10.1049/el:20073739

Google Scholar

[4] J. Virtanen, L. Ukkonen, T. Björninen, L. Sydänheimo, Printed humidity sensor for UHF RFID system, IEEE Sensor Application Symposim, Feb. (2010) 269-272.

DOI: 10.1109/sas.2010.5439426

Google Scholar

[5] C. Occhiuzzi, A. Rida, G. Marrocco, M.M. Tentzeris, CNT-based RFID passive gas sensor, IEEE MTT-S Int. Symp. Aug. (2011) 1-4.

DOI: 10.1109/mwsym.2011.5973292

Google Scholar

[6] P.S. Anjana, M.T. Sebastian, Low dielectric loss PTFE/CeO2 ceramic composites for microwave substrate applications, Int. J. Appl. Ceram. Technol., 5.

DOI: 10.1002/app.31690

Google Scholar

[4] (2008) 325–333.

Google Scholar

[7] S. George, P.S. Anjana, M.T. Sebastian, Dielectric, mechanical, and thermal properties of low-permittivity polymer–ceramic composites for microelectronic applications, Int. J. Appl. Ceram. Technol., 7.

DOI: 10.1111/j.1744-7402.2010.02510.x

Google Scholar

[4] (2010) 461–474.

Google Scholar

[8] K.S. Jacob, R. Satheesh, R. Ratheesh, Preparation and microwave characterization of BaNd2-xSmxTi4O12 (0≤x≤2) ceramics and their effect on the temperature coefficient of dielectric constant in polytetrafluoroethylene composites , Materials Research Bulletin 44 (2009).

DOI: 10.1016/j.materresbull.2009.06.001

Google Scholar

[9] C.C. Wu, C.F. Yang, Y.C. Chen, C.Y. Huang, C.J. Huang, Fabrication of circular polarization antenna on PEI/BSTZ composite substrate for the application of UHF-RFID reader, Journal of The Electrochemical Society, 156(12) (2009) 197-200.

DOI: 10.1149/1.3236636

Google Scholar