Effect of Ti:Fe Ratios on the Phase Structures and Properties of Iron Titanium Oxides

Article Preview

Abstract:

Iron titanium oxides with different Ti:Fe ratios (molar ratio: 3:1, 2:1, 1:1, 1:2, 1:3) have been prepared by chemical coprecipitation process. The structures and properties of the samples have been characterized by X-ray diffraction, vibrating sample magnetometer and UV-vis spectrophotometer. Results show that the samples annealed at 460 °C have poor crystallinity. At 550 °C, the crystallinity of all the samples increased strikingly. The iron titanium oxides contained anatase TiO2, rutile TiO2, α-Fe2O3 and/or Fe2TiO5. Ti:Fe ratios have a great influence on the detailed phase compositions of each sample. The iron titanium oxides exhibited paramagnetism and the intensity of magnetization increased with the increasing content of Fe. Band gap energies of the oxides changed slightly with increasing content of Fe with an average value of 2.0 eV, obviously lower than that of TiO2 .

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

757-761

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Berger, A. Ghicov, Y. -C. Nah, P. Schmuki, Langmuir 25 (2009) 4841-4844.

Google Scholar

[2] D.V. Portan, A.A. Kroustalli, D.D. Deligianni, G.C. Papanicolaou, J. Biomed. Mater. Res. Part A 100A (2012) 2546-2553.

DOI: 10.1002/jbm.a.34188

Google Scholar

[3] Q. Wu, J.J. Ouyang, K.P. Xiea, L. Sun, J. Hazard. Mater. 199 (2012) 410-417.

Google Scholar

[4] C. Karunakaran, S. Senthilvelan, Electrochem. Commun. 8 (2006) 95-101.

Google Scholar

[5] M. Misra, K.S. Raja, The Electrochemical Society. 33, (2011), 15-24.

Google Scholar

[6] O.K. Tan, W. Cao, Y. Hu, W. Zhu, Ceram. Int. 30 (2004) 1127-1133.

Google Scholar

[7] S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Chem. Mat. 21 (2009) 3048-3055.

Google Scholar

[8] Y. Hou, X.Y. Li, Q.D. Zhao, et al., Adv. Funct. Mater. 20 (2010) 2165-2174.

Google Scholar

[9] M. Enhessari, M.K. Razi, L. Etemad, A. Parviz, J. Exp. Nanosci. (2012) 1-10.

Google Scholar

[10] M.A. Madare, S.V. Salvi, Turk. J. Phys. 29 (2005) 25-31.

Google Scholar

[11] B. Pal, T. Hata, K. Goto, G. Nogami, J. Mol. Catal. A-Chem. 169 (2001) 147-155.

Google Scholar

[12] M. Mohammadi, D. Fray, Physica E. 46 (2012), 43-51.

Google Scholar

[13] J.S. Im, S.K. Lee, Y. -S. Lee, Appl. Surf. Sci. 257 (2011) 2164-2169.

Google Scholar

[14] K.M. Min, K.S. Park, A.H. Lim, J.C. Kim, Ceram. Int. 38 (2012) 6009-6013.

Google Scholar

[15] V. Balek, N. Todorova, C. Trapalis, et al., J. Therm. Anal. Calorim. 80 (2005) 503-509.

Google Scholar

[16] E. Celik, A.Y. Yildiz, N.F. Ak Azem, M. Tanoglu, Mater. Sci. Eng. B. 129 (2006) 193-199.

Google Scholar

[17] I.J. Berlin, L.V. Maneeshya, J.K. Thomas, J. Lumines. 132 (2012) 3077-3081.

Google Scholar

[18] G. Mallia, N.M. Harrison, Phys. Rev. B. 75 (2007) 1-11.

Google Scholar