Preparation and Electromagnetic Wave Absorption Properties of Core-Shell Ni/TiO2 Microspheres

Article Preview

Abstract:

The composite microspheres with Ni cores and amorphous TiO2 shells (Ni@TiO2) were synthesized by a one-pot solvothermal method at 180°C for 15 h, which used nickel chloride hexahydrate as Ni source andtetrabutyl orthotitanate as Ti source. The Ni/TiO2 core/shell composites were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX). A possible formation mechanism of core-shell Ni/TiO2 was proposed. Furthermore, the microwave absorption properties of these microspheres were investigated in terms of complex permittivity and permeability. The minimum reflection loss is-29.5 dB at 14.4 GHz for a layer of 4.0 mm thickness. Such phenomenon is attributed to the synergy effect between magnetic loss of Ni core and dielectric loss of amorphous TiO2 shell. The enhanced microwave absorption properties are also believed to be due to the unique coreshell structure. All results indicate that these Ni@TiO2 microspheres may be attractive candidate materials for electromagnetic wave absorption applications.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

762-766

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Li, Y. Deng, B. Shen, W. Hu, Preparation and microwave absorption properties of Ni–Fe3O4 hollow spheres, Materials Science and Engineering: B 164 (2) (2009) 112-115.

DOI: 10.1016/j.mseb.2009.08.004

Google Scholar

[2] X. Li, X. Han, Y. Tan, P. Xu, Preparation and microwave absorption properties of Ni–B alloy-coated Fe3O4 particles, Journal of Alloys and Compounds 464 (1) (2008) 352-356.

DOI: 10.1016/j.jallcom.2007.09.123

Google Scholar

[3] K. Jia, R. Zhao, J. Zhong, X. Liu, Preparation and microwave absorption properties of loose nanoscale Fe3O4spheres, Journal of Magnetism and Magnetic Materials 322(15) (2010) 2167-2171.

DOI: 10.1016/j.jmmm.2010.02.003

Google Scholar

[4] Z. Ma, R. Zhao, X. Yang, J. Wei, F. Meng, X. Liu, Microwave absorption properties of Fe3O4/CuPc hybrid material with cooperative dual nonlinear dielectric/magnetic resonance, Materials Letters 69(2012) 30-33.

DOI: 10.1016/j.matlet.2011.11.055

Google Scholar

[5] X. Zhang, X. Dong, H. Huang, B. Lv, J. Lei, C. Choi, Microstructure and microwave absorption properties of carbon-coated iron nanocapsules, Journal of Physics D: Applied Physics 40 (17) (2007) 5383-5387.

DOI: 10.1088/0022-3727/40/17/056

Google Scholar

[6] L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, F. Li, Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell, Nanotechnology 21 (9) (2010) 095708.

DOI: 10.1088/0957-4484/21/9/095708

Google Scholar

[7] X. Liu, D. Geng, H. Meng, P. Shang, Z. Zhang, Microwave-absorption properties of ZnO-coated iron nanocapsules, Applied Physics Letters 92 (17) (2008) 173117-173117-3.

DOI: 10.1063/1.2919098

Google Scholar

[8] Y. -J. Chen, P. Gao, R. -X. Wang, C. -L. Zhu, L. -J. Wang, M. -S. Cao, H. -B. Jin, Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties, The Journal of Physical Chemistry C 113 (23) (2009) 10061-10064.

DOI: 10.1021/jp902296z

Google Scholar

[9] X. Zhang, X. Dong, H. Huang, Y. Liu, W. Wang, X. Zhu, B. Lv, J. Lei, C. Lee, Microwave absorption properties of the carbon-coated nickel nanocapsules, Applied Physics Letters 89 (5) (2006) 053115-053115-3.

DOI: 10.1063/1.2236965

Google Scholar

[10] L. Xi, Z. Wang, Y. Zuo, X. Shi, The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction, Nanotechnology 22 (4) (2011)045707.

DOI: 10.1088/0957-4484/22/4/045707

Google Scholar

[11] Y. Xiong, J.M. McLellan, J. Chen, Y. Yin, Z. -Y. Li, Y. Xia, Kinetically Controlled Synthesis of Triangular and Hexagonal Nanoplates of Palladium and Their SPR/SERS Properties, Journal of the American Chemical Society 127 (48) (2005) 17118-17127.

DOI: 10.1021/ja056498s

Google Scholar

[12] J. Guan, L. Liu, L. Xu, Z. Sun, Y. Zhang, Nickel flower-like nanostructures composed of nanoplates: one-pot synthesis, stepwise growth mechanism and enhanced ferromagnetic properties, CrystEngComm 13 (7) (2011) 2636-2643.

DOI: 10.1039/c0ce00805b

Google Scholar

[13] J. Liu, J. Xu, R. Che, et al., Hierarchical magnetic yolk-shell microspheres with mixed barium silicate and barium titanium oxide shells for microwave absorption enhancement, Journal of Materials Chemistry 22 (18) (2012) 9277-9284.

DOI: 10.1039/c2jm30669g

Google Scholar

[14] C. Yin, Y. Cao, J. Fan, et al., Synthesis of hollow carbonyl iron microspheres via pitting corrosion method and their microwave absorption properties, Applied Surface Science 270 (2013) 432-438.

DOI: 10.1016/j.apsusc.2013.01.044

Google Scholar

[15] S. Ni, S. Lin, Q. Pan, F. Yang, K. Huang, D. He, Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals, Journal of Physics D: Applied Physics 42 (5) (2009) 055004.

DOI: 10.1088/0022-3727/42/5/055004

Google Scholar