[1]
Y.C. Zhang, W.N. Ye, Z.Z. Yang, C.J. Lu, L.H. Xia, Effect of excess Pb on formation of perovskite-type 0. 67Pb(Mg1/3Nb2/3)O3-0. 33PbTiO3 powders synthesized through a sol–gel process, Journal of Materials Science: Materials in Electronics. 22(1) (2010).
DOI: 10.1007/s10854-010-0090-2
Google Scholar
[2]
H. Jiang, Y.K. Zou, Q. Chen, K.K. Li, R. zhang, Y. Wang, Transparent Electro-Optic Ceramics and Devices, Proceedings of SPIE. 5644 (2005) 380.
Google Scholar
[3]
M.L. Calzada, M. Algueró, J. Ricote, A. Santos, L. Pardo, Preliminary results on sol-gel processing of <100> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films using diol-based solutions, Journal of Sol-Gel Science and Technology. 42(3) (2006) 331-336.
DOI: 10.1007/s10971-006-0203-9
Google Scholar
[4]
K.H. Lam, H.L.W. Chan, C.L. Choy, H.S. Luo, Q.R. Yin Z.W. Yin, Properties of PMN–PT fibres fabricated using powder of PMN–PT single crystals, Ceramics International. 30(7) (2004) 1939-(1943).
DOI: 10.1016/j.ceramint.2003.12.189
Google Scholar
[5]
L.X. Cao, X. Yao, X. Zhou, Y.J. Feng, Research on dielectric and piezoelectric properties of Ta-doped 0. 68Pb(Mg1/3Nb2/3)O3–0. 32PbTiO3 ceramics, Ceramics International. 30(7) (2004) 1373-1376.
DOI: 10.1016/j.ceramint.2003.12.103
Google Scholar
[6]
M. Ghasemifard, S.M. Hosseini, Gh.H. Khorrami, Synthesis and structure of PMN–PT ceramic nanopowder free from pyrochlore phase, Ceramics International. 35(7) (2009) 2899-2905.
DOI: 10.1016/j.ceramint.2009.03.036
Google Scholar
[7]
S.M. Gupta, D. Viehland, Comositional studies of Lanthanum-modified morphotropic phase boundary Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics, J. Am. Ceram. Soc. 80(2) (1997) 477-485.
DOI: 10.1111/j.1151-2916.1997.tb02854.x
Google Scholar
[8]
E.M. Jayasingh, K. Prabhakaran, R. Sooraj, C. Durgaprasad, S.C. Sharma, Synthesis of pyrochlore free PMN-PT powder by partial oxalate process route, Ceramics International. 35(2) (2009) 591-596.
DOI: 10.1016/j.ceramint.2008.01.022
Google Scholar
[9]
P. Papet, J.P. Doughterty, T.R. Shrout, Particle and grain size effects on the dielectric behavior of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3, J. Mater. Res. 5 (1990) 2902-2909.
DOI: 10.1557/jmr.1990.2902
Google Scholar
[10]
L. Wu, Y.C. Liou, The effect of heating rate on the properties of PMN relaxor ceramics, Ceramics International. 21 (1995) 335-338.
DOI: 10.1016/0272-8842(95)96205-4
Google Scholar
[11]
L.B. Kong, J. Ma, W. Zhu, O.K. Tan, Translucent PMN and PMN-PT ceramics from high-energy ball milling derived powders, Materials Reaearch Bulletin. 37 (2002) 23-32.
DOI: 10.1016/s0025-5408(01)00792-9
Google Scholar
[12]
B.J. Fang, C.L. Ding, J. Wu, Q.B. Du, J.N. Ding, Effects of dopants on the synthesis of Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics by the reaction-sintering method, Phys. Status Solidi A. 208(7) (2011) 1641-1645.
DOI: 10.1002/pssa.201127041
Google Scholar
[13]
B. Sahoo, P.K. Panda, Effect of CeO2 on dielectric, ferroelectric and piezoelectric properties of PMN–PT (67/33) compositions, J. Mater. Sci. 42(13) (2007) 4745-4752.
DOI: 10.1007/s10853-006-0828-7
Google Scholar
[14]
H.J. Wang, H.X. Lin, W. Li, J.L. Shi, Effect of La doping on microwave dielectric properties of translucent polycrystalline alumina ceramic, Ceramics International. 39(5) (2013) 4907-4911.
DOI: 10.1016/j.ceramint.2012.11.084
Google Scholar
[15]
S.M. Gupta, D. Viehland, Role of charge compensation mechanism in La-modified Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics: Enhanced ordering and pyrochlore formation, Journal of Applied Physics. 80(10) (1996) 5875-5883.
DOI: 10.1063/1.363581
Google Scholar
[16]
T.B. Wu, M.J. Shyu, C.C. Chung, H.Y. Lee, Phase transition and ferroelectric characteristics of Pb[(Mg1/3Nb2/3)1-xTix]O3 ceramics modified with La(Mg2/3Nb1/3)O3, J. Am. Ceram. Soc. 78(8) (1995) 2168-2174.
DOI: 10.1111/j.1151-2916.1995.tb08631.x
Google Scholar