Electrical and Physical Properties of Lead-Free (Na0.5K0.5)NbO3- Bi0.5(Na0.90K0.10)0.5TiO3 Ceramics

Article Preview

Abstract:

Extending the investigations on (Na0.5K0.5)NbO3-based solid solution for lead-free piezoelectric ceramics, this paper consider the complex solid-solution system (Na0.5K0.5)NbO3Bi0.5(Na0.90K0.10)0.5TiO3 [NKN-BNK. (Na0.5K0.5)NbO3 with 1 ~ 5 mol% Bi0.5(Na0.90K0.10)0.5TiO3 has been prepared following the conventional mixed oxide process. It can be concluded that the NKN-BNKT ceramics have orthorhombic structures in the case x 0.03. With increasing BNKT content (x=0.04 to 0.05), however, the structure changes from orthorhombic to rhombohedral phase. Above results demonstrated that the MPB between orthorhombic and rhombohedral phases exits in the solid solution with the BNKT content of x=0.03. At the MPB composition, the cryctalline structure of ceramics is considered to be a coexistence of orthorhombic and rhombohedral phase. Owing to the phase coexistence at the phase boundary, there exists a different symmetry regions (DSR) near the MPB. The DSR boundary motion increases the dielectric permittivity and piezoelectric coefficients. The electromechanical coupling factor and dielectric constant are higher for compositions near the MPB. The dielectric constant (KT33), planar coupling coefficient (kp), thickness coupling coefficient (kt) and piezoelectric constant (d33) of 0.98NKN-0.02BNKT ceramics were 1180, 30%, 58%, and 180, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

791-794

Citation:

Online since:

March 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.Y. Chu, W. Water, Y.D. Juang, et al., Ferroelectrics 297 (2003) 11-17.

Google Scholar

[2] M. Matsubara, T. Yamaguchi, and S. Hirano, Jpn. J. Appl. Phys. 44 (2005) 6136-6142.

Google Scholar

[3] M. D. Maeder, D. Damjanovic and N. Setter, J. Electroceram. 13 (2004) 385-392.

Google Scholar

[4] Y. Guo, K. Kakimoto, and H. Ohsato, Jpn. J. Appl. Phys. 43 (2004) 6662-6664.

Google Scholar

[5] C.H. Wang, J. Ceram. Soc. Jpn. 117 (2009) 680-684.

Google Scholar

[6] Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85 (2004) 4121-4124.

Google Scholar

[7] Y. Guo, K. Kakimoto, H. Ohsato, Mater. Lett. 59 (2004) 241-244.

Google Scholar

[8] Y. Guo, K. Kakimoto, and H. Ohsato, Solid State Commun., 129 (2004) 279-284.

Google Scholar

[9] R. C. Chang, S. Y. Chu, Y. F. Lin and Y. P. Wong, J. Eur. Cerm. Soc. 27 (2007) 4453-4460.

Google Scholar

[10] C. H. Wang, J. Ceram. Soc. Jpn. 116, (2008) 632-636.

Google Scholar

[11] Z. Chen, J. Hu, and X. He, J. Ceram. Soc. Jpn. 116 (2008) 661-663.

Google Scholar

[12] Anon., IRE Standards on Piezoelectric Crystals: Measurement of Piezoelectric Ceramics, Proc. IRE. 49 (1961) 1161-1168.

DOI: 10.1109/jrproc.1961.287860

Google Scholar