[1]
R. Sagar, S. Madolappa, N. Sharanappa, R.L. Raibagkar, Synthesis, structure and electrical studies of praseodymium doped barium zirconium titanate, Mater. Chem. Phys. 140 (2013) 119-125.
DOI: 10.1016/j.matchemphys.2013.03.009
Google Scholar
[2]
P.A. Jha, A.K. Jha, Effects of yttrium substitution on structural and electrical properties of barium zirconate titanate ferroelectric ceramics, Curr. Appl. Phys. 13 (2013) 1413-1419.
DOI: 10.1016/j.cap.2013.04.032
Google Scholar
[3]
P. Julphunthong, S. Chootin, T. Bongkarn, Phase formation and electrical properties of Ba(ZrxTi1-x)O3 ceramics synthesized through a novel combustion technique, Ceram. Int. 39 (2013) S415-S419.
DOI: 10.1016/j.ceramint.2012.10.105
Google Scholar
[4]
S.H. Yoon, J.R. Kim, S.H. Yoon, C.H. Kim, D.Y. Kim, Resistance degradation behavior of Zr-doped BaTiO3 ceramics and multilayer ceramic capacitor, J. Mater. Res. 28 (2013) 1078-1086.
DOI: 10.1557/jmr.2013.57
Google Scholar
[5]
P. Jarupoom, G. Rujijanagul, Improvement in piezoelectric strain of annealed Ba(Zr0. 07Ti0. 93)O3 based ceramics, J. Appl. Phys. 114 (2013) 027018.
DOI: 10.1063/1.4812227
Google Scholar
[6]
P.A. Jha, A.K. Jha, Influence of processing conditions on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics, J. Alloy. Compd, 513 (2012) 580-585.
DOI: 10.1016/j.jallcom.2011.11.012
Google Scholar
[7]
M.L. v. Mahesh, V.V.B. Prasad, A.R. James, Effect of sintering temperature on the microstructure and electrical properties of zirconium doped barium titanate ceramics, J. Mater. Sci: Mater Electron. (2013) doi: 10. 1007/s10854-013-1460-3.
DOI: 10.1007/s10854-013-1460-3
Google Scholar
[8]
X.Y. Chen, W. Cai, C.L. Fu, H.Q. Chen, Q. Zhang, Synthesis and morphology of Ba(Zr0. 20Ti0. 80)O3 powders obtained by sol–gel method, J. Sol-Gel. Sci. Techn. 57 (2011) 149-156.
DOI: 10.1007/s10971-010-2335-1
Google Scholar
[9]
R. Wendelbo, D.E. Akporiaye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites, J. Eur. Ceram. Soc. 26 (2006) 849-859.
DOI: 10.1016/j.jeurceramsoc.2004.12.031
Google Scholar
[10]
N. Phungjitt, P. Panya, T. Bongkarn, N. Vittayakorn, The structural phase and microstructures of perovskite Ba(Ti1-xZrx)O3 ceramics using the combustion route, Funct. Mater. Lett. 2 (2009) 169-174.
DOI: 10.1142/s1793604709000752
Google Scholar
[11]
H. Maiwa, Electromechanical properties of Ba(Zr0. 2Ti0. 8)O3 ceramics prepared by spark plasma sintering, Ceram. Int. 38S(2012) S219-S223.
DOI: 10.1016/j.ceramint.2011.04.087
Google Scholar
[12]
S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, A comparative study of Ba0. 95Ca0. 05Zr0. 25Ti0. 75O3 relaxor ceramics prepared by conventional and microwave sintering techniques, Mater. Chem. Phys. 112 (2008) 858-862.
DOI: 10.1016/j.matchemphys.2008.06.054
Google Scholar
[13]
S. Mahajan, O.P. Thakur, D.K. Bhattacharya, Study of structural and electrical properties of conventional furnace and microwave-sintered BaZr0. 10Ti0. 90O3 Ceramics, J. Am. Ceram. Soc. 92 (2009) 416-423.
DOI: 10.1111/j.1551-2916.2008.02885.x
Google Scholar
[14]
W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen, Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics, J. Alloy. Compd. 480 (2009) 870-873.
DOI: 10.1016/j.jallcom.2009.02.049
Google Scholar
[15]
W. Cai, C.L. Fu, W.G. Hu, G. Chen, X.L. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics, J. Alloy. Compd. 554 (2013) 64-71.
DOI: 10.1016/j.jallcom.2012.11.154
Google Scholar