Effects of Microwave Sintering Time on Microstructure, Dielectric, Ferroelectric Properties of Barium Zirconate Titanate Ceramics

Article Preview

Abstract:

Barium zirconate titanate ceramics were prepared by microwave sintering. Effects of microwave sintering time at 2.5kW on microstructure, dielectric and ferroelectric properties of barium zirconate titanate ceramics have been investigated. The result shows that the ceramic samples sintered at 2.5kW for 15~30min are single phase perovskite structure and there is no secondary phase observed. The degree of crystallinity increases with the increase of microwave sintering time. As the microwave sintering time increases, barium zirconate titanate ceramics become more uniform and the grain size increases. The Curie temperature of the samples sintered at 2.5kW for 15min, 20min and 30min is-20°C, -10°C and-15°C, respectively. As the microwave sintering time increases, the dielectric constant of barium zirconate titanate ceramics decreases initially and then increases, and the dielectric loss decreases. Moreover, the remnant polarization of the sample increases initially and then decreases, and the coercive electric field decreases as the microwave sintering time increases.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

786-790

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Sagar, S. Madolappa, N. Sharanappa, R.L. Raibagkar, Synthesis, structure and electrical studies of praseodymium doped barium zirconium titanate, Mater. Chem. Phys. 140 (2013) 119-125.

DOI: 10.1016/j.matchemphys.2013.03.009

Google Scholar

[2] P.A. Jha, A.K. Jha, Effects of yttrium substitution on structural and electrical properties of barium zirconate titanate ferroelectric ceramics, Curr. Appl. Phys. 13 (2013) 1413-1419.

DOI: 10.1016/j.cap.2013.04.032

Google Scholar

[3] P. Julphunthong, S. Chootin, T. Bongkarn, Phase formation and electrical properties of Ba(ZrxTi1-x)O3 ceramics synthesized through a novel combustion technique, Ceram. Int. 39 (2013) S415-S419.

DOI: 10.1016/j.ceramint.2012.10.105

Google Scholar

[4] S.H. Yoon, J.R. Kim, S.H. Yoon, C.H. Kim, D.Y. Kim, Resistance degradation behavior of Zr-doped BaTiO3 ceramics and multilayer ceramic capacitor, J. Mater. Res. 28 (2013) 1078-1086.

DOI: 10.1557/jmr.2013.57

Google Scholar

[5] P. Jarupoom, G. Rujijanagul, Improvement in piezoelectric strain of annealed Ba(Zr0. 07Ti0. 93)O3 based ceramics, J. Appl. Phys. 114 (2013) 027018.

DOI: 10.1063/1.4812227

Google Scholar

[6] P.A. Jha, A.K. Jha, Influence of processing conditions on the grain growth and electrical properties of barium zirconate titanate ferroelectric ceramics, J. Alloy. Compd, 513 (2012) 580-585.

DOI: 10.1016/j.jallcom.2011.11.012

Google Scholar

[7] M.L. v. Mahesh, V.V.B. Prasad, A.R. James, Effect of sintering temperature on the microstructure and electrical properties of zirconium doped barium titanate ceramics, J. Mater. Sci: Mater Electron. (2013) doi: 10. 1007/s10854-013-1460-3.

DOI: 10.1007/s10854-013-1460-3

Google Scholar

[8] X.Y. Chen, W. Cai, C.L. Fu, H.Q. Chen, Q. Zhang, Synthesis and morphology of Ba(Zr0. 20Ti0. 80)O3 powders obtained by sol–gel method, J. Sol-Gel. Sci. Techn. 57 (2011) 149-156.

DOI: 10.1007/s10971-010-2335-1

Google Scholar

[9] R. Wendelbo, D.E. Akporiaye, A. Karlsson, M. Plassen, A. Olafsen, Combinatorial hydrothermal synthesis and characterisation of perovskites, J. Eur. Ceram. Soc. 26 (2006) 849-859.

DOI: 10.1016/j.jeurceramsoc.2004.12.031

Google Scholar

[10] N. Phungjitt, P. Panya, T. Bongkarn, N. Vittayakorn, The structural phase and microstructures of perovskite Ba(Ti1-xZrx)O3 ceramics using the combustion route, Funct. Mater. Lett. 2 (2009) 169-174.

DOI: 10.1142/s1793604709000752

Google Scholar

[11] H. Maiwa, Electromechanical properties of Ba(Zr0. 2Ti0. 8)O3 ceramics prepared by spark plasma sintering, Ceram. Int. 38S(2012) S219-S223.

DOI: 10.1016/j.ceramint.2011.04.087

Google Scholar

[12] S. Mahajan, O.P. Thakur, D.K. Bhattacharya, K. Sreenivas, A comparative study of Ba0. 95Ca0. 05Zr0. 25Ti0. 75O3 relaxor ceramics prepared by conventional and microwave sintering techniques, Mater. Chem. Phys. 112 (2008) 858-862.

DOI: 10.1016/j.matchemphys.2008.06.054

Google Scholar

[13] S. Mahajan, O.P. Thakur, D.K. Bhattacharya, Study of structural and electrical properties of conventional furnace and microwave-sintered BaZr0. 10Ti0. 90O3 Ceramics, J. Am. Ceram. Soc. 92 (2009) 416-423.

DOI: 10.1111/j.1551-2916.2008.02885.x

Google Scholar

[14] W. Cai, C.L. Fu, J.C. Gao, H.Q. Chen, Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics, J. Alloy. Compd. 480 (2009) 870-873.

DOI: 10.1016/j.jallcom.2009.02.049

Google Scholar

[15] W. Cai, C.L. Fu, W.G. Hu, G. Chen, X.L. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics, J. Alloy. Compd. 554 (2013) 64-71.

DOI: 10.1016/j.jallcom.2012.11.154

Google Scholar