Large Remanent Polarization and Low Leakage Current in High-Tc 0.2Bi (Ni1/2Ti1/2)O3-0.8PbTiO3 Ferroelectric Thin Films

Article Preview

Abstract:

High Curie-temperature (Tc) polycrystalline 0.2Bi (Ni1/2Ti1/2)O3-0.8PbTiO3 (0.2BNT-0.8PT) thin films were fabricated on Pt (111)/Ti/SiO2/Si substrates via an aqueous chemical solution deposition (CSD) technique. The thin films exhibited good crystalline quality and dense, uniform microstructures with an average grain size of 55 nm. The dielectric, piezoelectric and ferroelectric properties of the films was investigated. The permittivity peak appeared at 485 °C, which was 100 °C higher than that of Pb (Zr,Ti)O3 thin films. The local effective piezoelectric coefficient d33 was 45 pm/V at 3V. Moreover, a large remnant polarization with 2Pr up to 92 uC/cm2 and a small leakage current of 2.2×10-5 A/cm2 under an electric field of 400 kV/cm were obtained. The magnitude of the measured polarization and the high Curie temperature make the 0.2BNT-0.8PT films promising candidates for application in high-temperature ferroelectric and piezoelectric devices.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

804-807

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.F. Scott and C.A. P. Dearaujo, Science, 246, (1989) 1400-5.

Google Scholar

[2] N. Setter, D. Damjanovic, L. Eng, et al., J. Appl. Phys., 100, 051606 (2006).

Google Scholar

[3] I. Grinberg and A.M. Rappe, Phys. Rev. Lett., 98, (2007) 037603.

Google Scholar

[4] S.W. Ko, H.G. Yeo and S. Trolier-Mckinstry, Appl. Phys. Lett., 95, (2009) 162901.

Google Scholar

[5] R.E. Eitel, C.A. Randall, T.R. Shrout, et al., Jpn. J. Appl. Phys., 40, (2001) 5999-6002.

Google Scholar

[6] H. Wen, X.H. Wang, X.Y. Deng, and L.T. Li, Appl. Phys. Lett., 88, (2006) 222904.

Google Scholar

[7] S.M. Choi, C.J. Stringer, T.R. Shrout and C.A. Randall, J. Appl. Phys., 98, (2005) 034108.

Google Scholar

[8] Q. Zhang, M.X. Jiang, Z.R. Li, J. Electroceram, 29, (2012) 179-82.

Google Scholar

[9] Z.K. Xie, B. Peng, S.Q. Meng, et al., J. Am. Ceram. Soc., 96, (2013) 2061-4.

Google Scholar

[10] G.H. Wu, H. Zhou, N. Qin and D.H. Bao, J. Am. Ceram. Soc., 94 (2011) 1675-8.

Google Scholar

[11] I. Grinberg and A.M. Rappe, Phys. Rev. Lett. 98, (2007) 037603.

Google Scholar

[12] J. Chen, K. Nittala, J.L. Jones, et al., Appl. Phys. Lett. 96, (2010) 252908.

Google Scholar

[13] M. Alguero, H. Amorin, T. Hungria, et al., Appl. Phys. Lett., 94, (2009) 012902.

Google Scholar

[14] X.Y. Deng, X.H. Wang, H. Wen, et al., Appl. Phys. Lett., 88, (2006) 252905.

Google Scholar

[15] M.A. Khan, T.P. Comyn, and A.J. Bell, Appl. Phys. Lett., 91, (2007) 032901.

Google Scholar