[1]
S. Zhuiykov, N. Miura, Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century: What are the prospects for sensors? Sens. Actuators B 121 (2007) 639-651.
DOI: 10.1016/j.snb.2006.03.044
Google Scholar
[2]
B.G. Nair, J. Nachlas and M. Middlemas, U.S. Patent 7, 217, 355. (2007).
Google Scholar
[3]
N. Miura, M. Nakatou, S. Zhuiykov, Impedance-based total-NOx sensor using stabilized zirconia and ZnCr2O4 sensing electrode operating at high temperature, Electrochem. Commun. 4 (2002) 284-287.
DOI: 10.1016/s1388-2481(02)00266-7
Google Scholar
[4]
V.V. Plashnitsa, P. Elumalai, Y. Fujio, N. Miura, Zirconia-based electrochemical gas sensors using nano-structured sensing materials aiming at detection of automotive exhausts, Electrochim. Acta 54 (2009) 6099-6106.
DOI: 10.1016/j.electacta.2008.12.040
Google Scholar
[5]
C. López-Gándara, J. M. Fernández-Sanjuán, F.M. Ramos, A. Cirera, Role of nanostructured WO3 in ion-conducting sensors for the detection of NOx in exhaust gases from lean combustion engines, Solid State Ion. 184 (2011) 83-87.
DOI: 10.1016/j.ssi.2010.09.003
Google Scholar
[6]
J. Parka, B.Y. Yoon, C.O. Park, W. Lee, C.B. Lee, Sensing behavior and mechanism of mixed potential NOx sensors using NiO, NiO (+YSZ) and CuO oxide electrodes, Sens. Actuators B 135 (2009) 516-523.
DOI: 10.1016/j.snb.2008.10.006
Google Scholar
[7]
F.M. Van Assche, J.C. Nino, E.D. Wachsman, Infrared and X-ray photoemission spectroscopy of adsorbates on La2CuO4 to determine potentiometric NOx sensor response mechanism, J. Electrochem. Soc. 155 (2008) J198-J204.
DOI: 10.1149/1.2912741
Google Scholar
[8]
E.N. Armstrong, T. Striker, V. Ramaswamy, J.A. Ruud, E.D. Wachsman, NOx adsorption behavior of LaFeO3 and LaMnO3+δ and its influence on potentiometric sensor response, Sens. Actuators B 158 (2011) 159-170.
DOI: 10.1016/j.snb.2011.05.060
Google Scholar
[9]
J. Wang, P. Elumalai, D. Terada, M. Hasei, N. Miura, Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures, Solid State Ion. 177 (2006) 2305-2311.
DOI: 10.1016/j.ssi.2005.12.023
Google Scholar
[10]
P. Elumalai, J. Wang, S. Zhuiykov, D. Terada, M. Hasei, N. Miura, Sensing characteristics of YSZ-based mixed-potential-type planar NOx sensors using NiO sensing electrodes sintered at different temperatures, J. Electrochem. Soc. 152 (2005).
DOI: 10.1149/1.1923707
Google Scholar
[11]
V.V. Plashnitsa, T. Ueda, N. Miura, Improvement of NO2 a sensing performances by an additional second component to the nano-structured NiO sensing electrode of a YSZ-based mixed-potential-type sensor, Int. J. Appl. Ceram. Technol. 3 (2006).
DOI: 10.1111/j.1744-7402.2006.02066.x
Google Scholar
[12]
N.F. Szabo, P.K. Dutta, Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes, Solid State Ion. 171 (2004) 183-190.
DOI: 10.1016/j.ssi.2004.04.019
Google Scholar
[13]
D.L. West, F.C. Montgomery, T.R. Armstrong, Use of La0. 85Sr0. 15CrO3 in high-temperature NOx sensing elements, Sens. Actuators B 106 (2005) 758-765.
Google Scholar
[14]
E.L. Brosha, R. Mukundan, R. Lujan, F.H. Garzon, Mixed potential NOx sensors using thin film electrodes and electrolytes for stationary reciprocating engine type applications, Sens. Actuators B 119 (2006) 398-408.
DOI: 10.1016/j.snb.2005.12.044
Google Scholar
[15]
E. Di Bartolomeo, M.L. Grilli, E. Traversa, Sensing mechanism of potentiometric gas sensors based on stabilized zirconia with oxide electrodes is it always mixed potential? J. Electrochem. Soc. 151 (2004) H133-H139.
DOI: 10.1149/1.1695387
Google Scholar
[16]
Q. Zhang, T. Wei, Y.H. Huang, Electrochemical performance of double-perovskite Ba2MMoO6 (M= Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells, J. Power Sources 198 (2012) 59-65.
DOI: 10.1016/j.jpowsour.2011.09.092
Google Scholar
[17]
X. Yin, L. Hong, Partial oxidation of methane to syngas over the catalyst derived from double perovskite (La0. 5Sr0. 5)2FeNiO6−δ, Appl. Catal. A-Gen. 371 (2009) 153-160.
DOI: 10.1016/j.apcata.2009.09.044
Google Scholar