Mg2CuxFe1O3.5+x Mixed Metal Oxides as Ammonia Sensitive Material of Ammonia Sensors

Article Preview

Abstract:

Mg2CuxFe1O3.5+x mixed metal oxides were found to be active catalysts for the selective oxidation of ammonia. In this paper, Mg2CuxFe1O3.5+x mixed metal oxides were prepared by co-precipitation method and calcined at 600°C for 12 h in an air atmosphere, then ammonia sensors have been made by screen-printed Mg2CuxFe1O3.5+x electrode on the electrolyte (8moleYSZ) surface and sintered at 1126°C for 1h in an air atmosphere. The samples were characterized by XRD and ESEM. The performance of ammonia sensors were tested in different concentration of ammonia. It can be found that Mg2Cu0.25Fe1O3.75 electrode showed a higher response value and good sensitivity to ammonia at 350°C, the value of sensitivity is 226.6mV/decsde. The influences of Cu content on the ammonia response performance of Mg2CuxFe1O3.5+x mixed metal oxides electrodes are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 602-603)

Pages:

851-857

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Burch, R., J.P. Breen and F.C. Meunier, Applied Catalysis B, 2002. 39(4): pp.283-303.

Google Scholar

[2] Willems, F.F., Cloudt, Eijnden, R.R., Eijnden, V.D.E., et al., Is closed-loop SCR control required to meet future emission targets? SAE World Congress. 2007-01-1574.

DOI: 10.4271/2007-01-1574

Google Scholar

[3] Hofmann, L., Klaus, R., Stefan F., et al., SAE transactions, 2004. 113(4): pp.559-572.

Google Scholar

[4] Da Yu Wang, Symons, W.T., Farhat, R.J., et al., Ammonia gas sensors. 2006, Delphi Technologies, Inc. US Patent 7074319, July 11, (2006).

Google Scholar

[5] Timmer, B., W. Olthuis and A.V.D. Berg, Sensors and Actuators B 2005. 107(2): pp.666-677.

Google Scholar

[6] Da Yu Wang, Yao, S., Mark S., et al., Sensors and Actuators, 2008. 01-0919.

Google Scholar

[7] Garzon, F.H., R. Mukundan and E.L. Brosha, Solid State Ionics, 2000. 136–137: pp.633-638.

Google Scholar

[8] Maekawa, T., Tamaki, J., Miura, N., et al., Chemistry Letters, 1992. 21(4): pp.639-642.

Google Scholar

[9] Hayakawa, I., Iwamoto, Y., Kikuta, K., et al., Sensors and Actuators B, 2000. 67(3): pp.270-274.

Google Scholar

[10] Elumalai, P., Plashnitsa, V.V., Fujio, Y., et al., Electrochem. Solid-State Lett., 2008. 11: p. J79-J81.

Google Scholar

[11] Xu, C.N., Miura, N., Ishida, Y., et al., Sensors and Actuators B, 2000. 65(1-3): pp.163-165.

Google Scholar

[12] Schönauer, D., Wiesner, K., Fleischer, M., et al., Sensors and Actuators B, 2009. 140(2): pp.585-590.

Google Scholar

[13] Chmielarz, L., Wegrzyn, A., Wojciechowska, M., et al., Catalysis Lett, 2011. 141(9): pp.1345-1354.

Google Scholar

[14] Chmielarz, L., Kuśtrowski, P., Rafalska-Łasocha, A., et al., Applied Catalysis B 2005. 58(3–4): pp.235-244.

DOI: 10.1016/j.apcatb.2004.12.009

Google Scholar

[15] M. Paranthaman, K. A. David, and T. B. Lindemer, Mater. Res. Bull., 32.

Google Scholar

[2] 165-173 (1997).

Google Scholar