[1]
B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye- sensitized colloidal TiO2 films, Nature. 353 (6346) (1991) 737-740.
DOI: 10.1038/353737a0
Google Scholar
[2]
Xie Y, Joshi P, Ropp M, Galipeau D, Zhang LF, Fong H, et al. Structural effects of core-modified porphyrins in dye-sensitized solar cells. J. Porphyrins Phthalocyanines 13 (2009) 903–909.
DOI: 10.1142/s1088424609001145
Google Scholar
[3]
M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem. 164 (2004) 3-14.
DOI: 10.1016/j.jphotochem.2004.08.014
Google Scholar
[4]
E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Nanocarbon counter electrode for dye-sensitized solar cells, Appl. Phys. Lett. 90 (2007) 173103.
DOI: 10.1063/1.2731495
Google Scholar
[5]
W.J. Lee, E. Ramasamya, D.Y. Lee, J.S. Song, Performance variation of carbon counter electrode based dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 92 (2008) 814–818.
DOI: 10.1016/j.solmat.2007.12.012
Google Scholar
[6]
C.T. Hsieh, B.H. Yang, J.Y. Lin, One- and two-dimensional carbon nanomate-rials as counter electrodes for dye-sensitized solar cells, Carbon 49 (2011) 3092–3097.
DOI: 10.1016/j.carbon.2011.03.031
Google Scholar
[7]
G.Q. Wang, W. Xing, S.P. Zhuo, Application of mesoporous carbon to counter electrode for dye-sensitized solar cells, J. Power Sources 194 (2009) 568–573.
DOI: 10.1016/j.jpowsour.2009.04.056
Google Scholar
[8]
D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huanga, Graphene-based counter electrode for dye-sensitized solar cells, Carbon 49 (2011) 5382–5388.
DOI: 10.1016/j.carbon.2011.08.005
Google Scholar
[9]
M. Wu, X. Lin, A. Hagfeldt, T. Ma, A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells, Chem. Commun. 47 (2011) 4535–4537.
DOI: 10.1039/c1cc10638d
Google Scholar
[10]
J. Chen, B. Li, J. Zheng, J. Zhao, H. Jing, Z. Zhu, Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells, Electrochim. Acta 56 (2011) 4624–4630.
DOI: 10.1016/j.electacta.2011.02.097
Google Scholar
[11]
S. Peng, Y. Wu, P. Zhu, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells, J. Photochem. Photobiol., A 223 (2011).
DOI: 10.1016/j.jphotochem.2011.08.004
Google Scholar
[12]
M. Wu, X. Lin, A. Hagfldt, T. Ma, Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells, Angew. Chem. Int. Ed. 50 (2011) 3520–3524.
DOI: 10.1002/anie.201006635
Google Scholar
[13]
J.S. Jang, D.J. Ham, E. Ramasamy, J.W. Lee, J.S. Lee, Platinum-free tungsten carbides as an efficient counter electrode for dye sensitized solar cells, Chem. Commun. 46 (2010) 8600–8602.
DOI: 10.1039/c0cc02247k
Google Scholar
[14]
X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, J. Electroanal. Chem. 570 (2004) 257-263.
DOI: 10.1016/j.jelechem.2004.04.004
Google Scholar
[15]
S.S. Kim, Y. Nah, Y. Noh, J. Jo, D. Kim, Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells, Electrochim. Acta 51 (2006) 3814-3819.
DOI: 10.1016/j.electacta.2005.10.047
Google Scholar
[16]
Z. Lan, J. Wu, J. Lin, M. Huang, Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells, J. Mater. Chem. 22 (2012) 3948-3954.
DOI: 10.1039/c2jm15019k
Google Scholar