Effect of Crack Formation under Elongation in Carbon Nanotube Networks Embedded in Polyurethane

Article Preview

Abstract:

A highly deformable composite composed of a network of electrically-conductive entangled carbon nanotubes embedded in elastic polyurethane for sensing tensile deformation by changes in strain has been prepared. The testing has shown that the composite can be extended as by much as 400 % during which the electrical resistance increases more than 270 times. The high strain sensing can be attributed to the network cracking upon extension. To understand the cracking mechanism and explain the resistance change, the structural changes of networks made of pristine carbon nanotubes (as well as functionalized multi-walled) were examined. The microscopic observation of crack formation and resistance change of the networks correlates well with the amount of cracking.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-234

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Slobodian, P. Riha, R. Olejnik, in: New Developments and Applications in Sensing Technology, edited by S.C. Mukhopadhyay, A. Lay-Ekuakille, A. Fuchs, Springer Verlag (2011), p.233

Google Scholar

[2] R.V. Gelamo, F.P. Rouxinol, C. Verissimo, M.A. Bica de Moraes, S.A. Moshkalev: Sens. Lett. Vol. 8, (2010), p.488

DOI: 10.1166/sl.2010.1299

Google Scholar

[3] S.E. Moulton, A.I. Minett, G.G. Wallace: Sens. Lett. Vol. 3, (2005), p.183

Google Scholar

[4] A. De la Vega, I.A. Kinloch, R.J. Young, W. Bauhofer: Compos. Sci. Technol. Vol. 71 (2011), p.160

Google Scholar

[5] E. Billotei, R. Zhang, H. Deng, M. Baxendale, T. Peijs: J. Mat. Chem. Vol. 20 (2010), p.9449

Google Scholar

[6] R. Arsat, X. He, P. Spizzirri, M. Shafiei, M. Arsat, W. Wlodarski: Sens. Lett. Vol. 9 (2011), p.940

DOI: 10.1166/sl.2011.1648

Google Scholar

[7] E. T. Thostenson, T.W. Chou: Nanotechnology Vol. 19 (2008), article no. 215713.

Google Scholar

[8] I.P. Kang, M.J. Schulz, J.H. Kim, V. Shanov, D.L. Shi: Smart Mater. Struct. Vol. 15 (2006), p.737

Google Scholar

[9] M.D. Rein, O. Breuer, H.D. Wagner: Compos. Sci. Technol. Vol. 71 (2011), p.373

Google Scholar

[10] P. Slobodian, P. Riha, A. Lengalova, P. Saha: J. Mater. Sci. Vol. 43 (2011), p.3186

Google Scholar

[11] G.T. Pham, Y.B. Park, Z. Liang, C. Zhang, B. Wang: Compos. Pt. B-Eng. Vol. 39 (2008), p.209

Google Scholar

[12] P. Slobodian, P. Riha, A. Lengalova, R. Olejnik, P. Saha: J. Exp. Nanosci.Vol. 6 (2011), p.294

Google Scholar

[13] P. Slobodian, P. Riha, P. Saha: Carbon Vol. 50 (2012), p.3446

Google Scholar

[14] R. Benlikaya, P. Slobodian, P. Riha: J. Nanomaterials (2013), in press.

Google Scholar

[15] P. Slobodian, P. Riha, P.Saha: Key Engineering Materials, Vol. 543 (2013), p.39

Google Scholar