[1]
E. Hristoforou, "Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications", Meas. Sci. & Technol., 14, p. R15-R47, (2003)
DOI: 10.1088/0957-0233/14/2/201
Google Scholar
[2]
E. Hristoforou, Magnetic Effects in Physical Sensor Design, J. Opt. Adv. Mat., 4, pp.245-260, (2002)
Google Scholar
[3]
I. Youroudi, C. Orfanidou and E. Hristoforou, Circumferentially oriented Ni cylindrical thin films for torque sensor applications, Sensors and Actuators A, 106, pp.179-182, (2003)
DOI: 10.1016/s0924-4247(03)00161-4
Google Scholar
[4]
I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)
Google Scholar
[5]
AG Mamalis, E. Hristoforou, ID Theodorakopoulos, T. Prikhna, Critical current density investigations of explosively compacted and extruded powder-in-tube MgB2 superconductors, Superconductor Science & Technology, 23, p. Art. No. 095011, (2010)
DOI: 10.1088/0953-2048/23/9/095011
Google Scholar
[6]
ND Papadopoulos, HS Karayianni, PE Tsakiridis, M. Perraki, E. Hristoforou, Cyclodextrin inclusion complexes as novel MOCVD precursors for potential cobalt oxide deposition, Applied Organometallic Chemistry, 24, pp.112-121, (2010)
DOI: 10.1002/aoc.1588
Google Scholar
[7]
ND Papadopoulos, E. Ellekova, HS Karayanni, E. Hristoforou, Synthesis and characterization of cobalt precursors for the growth of magnetic thin films by the MOCVD method, J. Opt. Adv. Mat., 10, pp.1098-1102, (2008)
Google Scholar
[8]
N. Papadopoulos, C.S. Karayianni, P. Tsakiridis, E. Sarantopoulou, E. Hristoforou, Effects of MOCVD thin cobalt films' structure and surface characteristics on their magnetic behavior, Chemical Vapor Deposition, 17, pp.211-220, (2011)
DOI: 10.1002/cvde.201106907
Google Scholar
[9]
ND Papadopoulos, HS Karayianni, PE Tsakiridis, M. Perraki, E. Sarantopoulou, E. Hristoforou, MOCVD Cobalt Oxide Deposition from Inclusion Complexes: Decomposition Mechanism, Structure, and Properties, Journal of the Electrochemical Society, 158, pp.5-13, (2011)
DOI: 10.1149/1.3509698
Google Scholar
[10]
S.B. Riffat, Xiaoli Ma, Thermoelectrics: A review of present and potential applications, Applied Thermal Engineering 23, p.913 – 935, (2003)
DOI: 10.1016/s1359-4311(03)00012-7
Google Scholar
[11]
CA Papadopoulos, DS Vlachos, A new planar device based on Seebeck effect for gas sensing applications, Sensors and Actuators B: Chemical, 21, 2, p.109–121, (1994)
DOI: 10.1016/s0925-4005(97)80022-6
Google Scholar
[12]
DS Vlachos, CA Papadopoulos, A technique for suppressing ethanol interference employing Seebeck effect devices with carrier concentration modulation, Sensors and Actuators B: Chemical, 44, 1–3, p.239–242, (1997)
DOI: 10.1016/s0925-4005(97)00215-3
Google Scholar
[13]
Rowe DM. CRC Handbook of thermoelectric, London, CRC Press; 1996.
Google Scholar
[14]
D.M. Rowe, Gao Min, Evaluation of thermoelectric modules for power generation, Journal of Power Sources 73, p.193 – 198, (1998)
DOI: 10.1016/s0378-7753(97)02801-2
Google Scholar
[15]
D.M. Rowe, Thermoelectric waste heat recovery as a renewable energy source, International Journal of Innovations in Energy Systems and Power, 1, 13 – 23, (2006)
Google Scholar
[16]
Basel I. Ismail, Wael H. Ahmed, Thermoelectric power generation using waste – heat energy as an alternative green technology, Recent Patents on Electrical Engineering 2, p.27 – 39, (2009)
DOI: 10.2174/1874476110902010027
Google Scholar