Chronoamperometry Study of the Electrodeposited Ni100-XPx Alloy Thin Films

Article Preview

Abstract:

Elecrodeposited Ni-P alloy thin films have been the subject of extended investigations, since the pioneering works of Brenner et al, in the late 1940s. It is well known, that the physical and chemical properties of the Ni-P deposit composition are strongly influenced by the preparation conditions. In our experimental procedure, we have used a Parstat 2253 potensiostat equipped with Power-Suite software. All the electrochemical experiments were performed in a three electrode cell in which the volume of the bath was 150ml, in this experimental technique, we can measure one or more of three parameters: the potential (V), current (i), and time (t). The aim of our work consists to study the nucleation and growth process and given morphology and composition of electrodeposited Nix-P100-x thin films on Copper substrates. For this purpose, cyclic voltametry and chnonoamperomaty have been used in order to determine the previous cited properties of thin films Ni-P, [0.10 of NaPH2O2 solutions. The chrnoamperogramms can be interpreted by the use of one of three models called: Growth mode (Me layer by layer formation); Franck Van der Merwe, FM model, Growth mode 3D (Me island formation on the top of predeposited), 2D Meads overlayers on substrat and Stranski-Krastanov; (SK model).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

661-664

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Petridis, A. Ktena, E. Laskaris, P. Dimitropoulos and E. Hristoforou, Sensor Lett. 5, (2007) 93

DOI: 10.1166/sl.2007.071

Google Scholar

[2] C. Petridis, I. Petrou, P. Dimitropoulos and E. Hristoforou, Sensor Lett. 5, (2007) 98

Google Scholar

[3] D. B. Lewis, G. W. Marshal, Surf. Coat. Technol. 78 (1996) 150

Google Scholar

[4] L. Chang, P. W. Kao, and C. 6H. Chen, Scripta Materialia 56 (2007) 713

Google Scholar

[5] A. Brenner, « Electrodeposition of alloys », vol.1, Academic Press, New York, (1963), 77

Google Scholar

[6] M. Ratzker, D. S. Lashmore, K. W. Pratt, Plat. Surf. Finish 9 (1986) 74

Google Scholar

[7] E. Budevsky, G. Staikov, W J Lorentz, Electrochimica Acta 45 (2000) 2559

Google Scholar

[8] M. Volmer, A. Weber, Z. Phys. Chem. 119 (1926) 277

Google Scholar

[9] Hadria Medouer, Mosbah Daamouche, Abderrahim Guittoum, Saci Messaadi, Stefania Haido Karagianni, Key Engineering Materials, 495 (2012) pp.319-322

DOI: 10.4028/www.scientific.net/kem.495.319

Google Scholar

[10] M. Daamouche, H. Medouer, A. Guittoum, S. Messaadi, and S. H. Karagianni, Sensor Lett. 11, vol. 4 (2013) 670

DOI: 10.1166/sl.2013.2937

Google Scholar

[11] Saci Messaadi, Mosbah Daamouche, Abderrahim Guittoum, Hadria Medouer, Noureddine Fenineche, Ibtissem Zidani, Key Engineering Materials, 495 (2012) pp.1-4

DOI: 10.4028/www.scientific.net/kem.495.1

Google Scholar

[12] S. Messaadi, M. Daamouche, A. Guittoum, H. Medouer, N. E. Fenineche, I. Zidani, Sensor Letters, 25/04/2013, SL1731968_3296 (In print)

DOI: 10.1166/sl.2013.2938

Google Scholar

[13] T. Mahalingam, M. Raja, S. Thanikaikarasan, C. Sanjeeviraja, S. Velumani, Hosun Moon, Yong Deak kim, Materials Characterization 58 (2007) 800

DOI: 10.1016/j.matchar.2006.11.023

Google Scholar