Nanostructured Magnetic Materials for Applications in Electrical Machines

Article Preview

Abstract:

The aim of this survey is to design a low energy production wind generator for home or small industrial use, with short blades or different structure. Magnetic materials such as strontium hexaferrites and Nd-Fe-B composites are used in form of plastic bonded magnetic powder or laminas in the rotor and amorphous material or silicon steel in the stator. The envisaged machines are switched reluctance and permanent magnet, while preferable structure is this of vertical axis. Before the construction, both inside and outside rotor design machines, also toroidal stators can be tested, using finite element method and simulation programs such as ANSYS, COMSOL. Several parameters are examined, such as torque, magnetic field orientation and strength, magnet topology, output, etc, in order to achieve low cogging force along with high power. The results are to be compared with currently manufactured machines characteristics so as to decide for the efficiency of further investment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

669-672

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Hristoforou, "Magnetostrictive Delay Lines: Engineering Theory and Sensing Applications", Meas. Sci. & Technol., 14, p. R15-R47, (2003)

DOI: 10.1088/0957-0233/14/2/201

Google Scholar

[2] E. Hristoforou, Magnetic Effects in Physical Sensor Design, J. Opt. Adv. Mat., 4, pp.245-260, (2002)

Google Scholar

[3] PD Skafidas, DS Vlachos, JN Avaritsiotis, Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques, Sensors and Actuators B: Chemical, 19, 1–3, p.724–728, (1994)

DOI: 10.1016/0925-4005(93)01222-p

Google Scholar

[4] I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)

Google Scholar

[5] DS Vlachos, AC Xenoulis, Gas detection sensitivity and cluster size, Nanostructured Materials, 10, 8, p.1355–1361, (1998)

DOI: 10.1016/s0965-9773(99)00005-7

Google Scholar

[6] E. Hristoforou and R.E. Reilly, Nonuniformity in Amorphous Ribbon Delay Lines After Stress and Current Annealing, J. Appl. Phys., 69, pp.5008-5010, (1991)

DOI: 10.1063/1.348157

Google Scholar

[7] E. Hristoforou, H. Chiriac, M. Neagu, I. Darie, Sound Velocity in Magnetostrictive Amorphous Ribbons and Wires, J. Phys. D: Applied Physics, 27, pp.1595-1600, (1994)

DOI: 10.1088/0022-3727/27/8/002

Google Scholar

[8] E. Hristoforou and D. Niarchos, Fast Characterisation of Magnetostrictive Delay Lines, IEEE Trans. Magn., 29, pp.3147-3149, (1993)

DOI: 10.1109/20.280871

Google Scholar

[9] H. Hauser, J. Steurer, J. Nicolics, I. Giouroudi. "Wireless Magnetic Field Sensor", Journal of Electrical Engineering, 57, No. 12/S, ISSN 1335-3632, (2006)

Google Scholar

[10] L. Lanotte, G. Ausanio, M. Carbucicchio, V. Iannotti, M. Muller, "Coexistence of very soft magnetism and good magnetoelastic coupling in the amorphous alloy Fe62.5Co6Ni7.5Zr6Cu1Nb2B15", J. Magn. Magn. Mater., 215, pp.276-279, (2000)

DOI: 10.1016/s0304-8853(00)00133-5

Google Scholar

[11] I. Giouroudi, H. Hauser, L. Musiejovsky, J. Steurer. "GMI Sensor integrated in an Oscillator System", Journal of Applied Physics, 99, (2006)

DOI: 10.1063/1.2170051

Google Scholar

[12] G. Ausanio, V. Iannotti, L. Lanotte, M. Carbucicchio, M. Rateo, "Weak stripe domains in Co/Fe multilayers", J. Magn. Magn. Mat., 226, pp.1740-1742, (2001)

DOI: 10.1016/s0304-8853(00)00878-7

Google Scholar

[13] DM Kepaptsoglou, G. Polychroniadis, KG Efthimiadis, P. Svec, E. Hristoforou, Electron microscopy study of (Fe-Co)-Nb-Si-B alloys, J. Opt. Adv. Mat., 8, pp.1775-1779, (2006)

Google Scholar

[14] DM Kepaptsoglou, K. Efthimiadis, P. Svec, E. Hristoforou, Magnetotransport studies in (FexCoy)(73)Nb7Si5B15 ribbons, J. Magn. Magn. Mater., 304, pp.583-585, (2006)

DOI: 10.1016/j.jmmm.2006.02.182

Google Scholar

[15] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, CRC Press LLC, Florida, (2001)

DOI: 10.1201/9781420041644

Google Scholar

[16] Konstantinopoulos Christos, Design and construction of an electrical machine, National Technical University of Athens, (2013)

Google Scholar

[17] R. Tiwary, S. Narayan, O. Pandey, Preparation of Strontium Hexaferrite Magnets from Celestite and Blue Dust by Mechanochemical Route, Journal of Mining and Metallurgy 44 B p.91 – 100, (2008)

DOI: 10.2298/jmmb0801091t

Google Scholar

[18] David A. Torrey, Switched Reluctance Generators and Their Control, IEEE Transactions on Industrial Electronics, 49, p.1, (2002)

Google Scholar

[19] K. Pavlou, Congress on Electromechanical Systems for Electrification: Permanent Magnet Machines, NTUA, (2012)

Google Scholar

[20] Alfred Still, Principles of Electrical Design DC and AC Generators, McGraw-Hill book company, New York, (1916)

Google Scholar

[21] Mpidras Michael, Optimal Structural design of wind turbines, School of Civil Engineering, National Technical University of Athens, (2012)

Google Scholar