Coagulation Sensors Based on Magnetostrictive Sensors Made by Ferromagnetic Amorphous Alloys for Biomedical Applications

Article Preview

Abstract:

Coagulation sensors are magnetostrictive sensors for measuring the time required for coagulation to take place in a liquid, as blood. Their operating principle is based on magnetostrictive delay lines (MDL), which consist of ribbons made by ferromagnetic amorphous alloys. Coagulation sensors have a significant role in biomedical, chemical engineering and environmental applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

653-656

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DS Vlachos, DK Fragoulis, JN Avaritsiotis An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors, Sensors and Actuators B: Chemical, 45, 3, p.223–228, (1997)

DOI: 10.1016/s0925-4005(97)00309-2

Google Scholar

[2] CA Papadopoulos, DS Vlachos, Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors, Sensors and Actuators B: Chemical 42, 2, p.95–101, (1997)

DOI: 10.1016/s0925-4005(97)00190-1

Google Scholar

[3] I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)

Google Scholar

[4] E. Hristoforou, H. Hauser and PD Dimitropoulos, On a New Principle of Smart Multi-Sensor Based on Magnetic Effects, IEEE Sensors, 6, pp.372-379, (2006)

DOI: 10.1109/jsen.2005.859781

Google Scholar

[5] E. Hristoforou, A. Ktena, Magnetostriction and magnetostrictive materials for sensing applications, J. Magn. Magn. Mater., 316, pp.372-378, (2007)

DOI: 10.1016/j.jmmm.2007.03.025

Google Scholar

[6] E. Hristoforou, Amorphous Magnetostrictive Wires Used in Delay Lines for Sensing Applications, J. Magn. Magn. Mater., 249, pp.387-392, (2002)

DOI: 10.1016/s0304-8853(02)00563-2

Google Scholar

[7] E. Hristoforou and R.E. Reilly, Force Sensors Based on Distortion in Delay Lines, IEEE Trans. Mag., 28, pp.1974-1977, (1992)

DOI: 10.1109/20.144756

Google Scholar

[8] E. Hristoforou and R.E. Reilly, A Digitiser Based on Reflections in Delay Lines, J. Appl. Phys., 70, pp.4577-4580, (1991)

DOI: 10.1063/1.349093

Google Scholar

[9] E. Maliaritsi, L. Zoumpoulakis, J. Simitzis, P. Vassiliou and E. Hristoforou, Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications, Journal of Magnetism and Magnetic Materials, 299, pp.41-52, (2006)

DOI: 10.1016/j.jmmm.2005.03.095

Google Scholar

[10] L. Theodorakis, E. Papadopoulos, S. Katsaragakis, CS Karagianni, E. Hristoforou, On the response of a blood coagulation sensor, J. Opt. Adv. Mat., 10, pp.1282-1289, (2008)

Google Scholar

[11] Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology, twelfth ed., Saunders, (2011)

Google Scholar

[12] D. Meadows, J.S. Schultz, Anal. Chim. Acta 280, p.21, (1993)

Google Scholar

[13] M. Andersson, J. Andersson, A. Sellborn, M. Berglin, B. Nilsson, H. Elwing, Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces, Biosensors Bioelectron., in press, (2004)

DOI: 10.1016/j.bios.2004.09.026

Google Scholar

[14] T.M. Lin, T.J. Cheng, T.H. Wu, H.C. Chang, Comparing a piezoelectric quartz crystal with an optical coagulometer in monitoring high-dose heparin therapy by determining whole blood activated partial thromboplastin time and activated clotting time, Sensors and Actuators B: Chemical, in press, (2005)

DOI: 10.1016/j.snb.2004.12.058

Google Scholar

[15] L.G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, L.G. Bachas, Biosensors Bioelectron. 18 p.675, (2003)

DOI: 10.1016/s0956-5663(03)00033-2

Google Scholar

[16] E. Hristoforou, R.E. Reilly, IEEE Trans. Magn. 28, p.1974, (1992)

Google Scholar

[17] E. Hristoforou, Meas. Sci. Technol. 14, R15, (2003)

Google Scholar