[1]
DS Vlachos, DK Fragoulis, JN Avaritsiotis An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors, Sensors and Actuators B: Chemical, 45, 3, p.223–228, (1997)
DOI: 10.1016/s0925-4005(97)00309-2
Google Scholar
[2]
CA Papadopoulos, DS Vlachos, Effect of surface catalysts on the long-term performance of reactively sputtered tin and indium oxide gas sensors, Sensors and Actuators B: Chemical 42, 2, p.95–101, (1997)
DOI: 10.1016/s0925-4005(97)00190-1
Google Scholar
[3]
I. Giouroudi, A. Ktena and E. Hristoforou, Microstructural characterization of cylindrical Fe1-xNix thin films, J. Opt. Adv. Mat., 6, pp.45-50, (2004)
Google Scholar
[4]
E. Hristoforou, H. Hauser and PD Dimitropoulos, On a New Principle of Smart Multi-Sensor Based on Magnetic Effects, IEEE Sensors, 6, pp.372-379, (2006)
DOI: 10.1109/jsen.2005.859781
Google Scholar
[5]
E. Hristoforou, A. Ktena, Magnetostriction and magnetostrictive materials for sensing applications, J. Magn. Magn. Mater., 316, pp.372-378, (2007)
DOI: 10.1016/j.jmmm.2007.03.025
Google Scholar
[6]
E. Hristoforou, Amorphous Magnetostrictive Wires Used in Delay Lines for Sensing Applications, J. Magn. Magn. Mater., 249, pp.387-392, (2002)
DOI: 10.1016/s0304-8853(02)00563-2
Google Scholar
[7]
E. Hristoforou and R.E. Reilly, Force Sensors Based on Distortion in Delay Lines, IEEE Trans. Mag., 28, pp.1974-1977, (1992)
DOI: 10.1109/20.144756
Google Scholar
[8]
E. Hristoforou and R.E. Reilly, A Digitiser Based on Reflections in Delay Lines, J. Appl. Phys., 70, pp.4577-4580, (1991)
DOI: 10.1063/1.349093
Google Scholar
[9]
E. Maliaritsi, L. Zoumpoulakis, J. Simitzis, P. Vassiliou and E. Hristoforou, Coagulation sensors based on magnetostrictive delay lines for biomedical and chemical engineering applications, Journal of Magnetism and Magnetic Materials, 299, pp.41-52, (2006)
DOI: 10.1016/j.jmmm.2005.03.095
Google Scholar
[10]
L. Theodorakis, E. Papadopoulos, S. Katsaragakis, CS Karagianni, E. Hristoforou, On the response of a blood coagulation sensor, J. Opt. Adv. Mat., 10, pp.1282-1289, (2008)
Google Scholar
[11]
Arthur C. Guyton, John E. Hall, Textbook of Medical Physiology, twelfth ed., Saunders, (2011)
Google Scholar
[12]
D. Meadows, J.S. Schultz, Anal. Chim. Acta 280, p.21, (1993)
Google Scholar
[13]
M. Andersson, J. Andersson, A. Sellborn, M. Berglin, B. Nilsson, H. Elwing, Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces, Biosensors Bioelectron., in press, (2004)
DOI: 10.1016/j.bios.2004.09.026
Google Scholar
[14]
T.M. Lin, T.J. Cheng, T.H. Wu, H.C. Chang, Comparing a piezoelectric quartz crystal with an optical coagulometer in monitoring high-dose heparin therapy by determining whole blood activated partial thromboplastin time and activated clotting time, Sensors and Actuators B: Chemical, in press, (2005)
DOI: 10.1016/j.snb.2004.12.058
Google Scholar
[15]
L.G. Puckett, G. Barrett, D. Kouzoudis, C. Grimes, L.G. Bachas, Biosensors Bioelectron. 18 p.675, (2003)
DOI: 10.1016/s0956-5663(03)00033-2
Google Scholar
[16]
E. Hristoforou, R.E. Reilly, IEEE Trans. Magn. 28, p.1974, (1992)
Google Scholar
[17]
E. Hristoforou, Meas. Sci. Technol. 14, R15, (2003)
Google Scholar