Sliding-Mode Control for Piezoelectric Actuators Based on Hysteresis Observer

Article Preview

Abstract:

A sliding-mode control (SMC) scheme based on hysteresis observer is designed in this paper for precision trajectory tracking of piezoelectric actuators. A mathematical model considering the dynamics of a mass-spring-damper trio and the hysteresis friction force describing the parameters of bristle stiffness, damping and viscous is proposed. A lumped uncertain function composed of the mechanical parameters, displacement and its deriviation, hysteresis friction force and external load force is estimated by a hysteresis observer. An asymptotically stable sliding surface is defined. Lyapunov stability theory is applied to guarantee the asymptotical stability for the trajectory tracking error. Experiments are conducted to validate the effectiveness of the proposed method. Results show that a satisfied tracking response to a sinusoidal trajectory is achieved, and the positioning errors under a triangle scanning contour are dramatically reduced compared with the traditional SMC.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

1271-1276

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Uchino. Piezoelectric actuator and ultrasonic motors, Norwell, MA: Kluwer Academic Publishers, (1997).

Google Scholar

[2] S. B. Choi, J. K. Yoo, M. S. Choi and Y. S. Lee, Position control of a cylinder system using a piezoactuator-driven pump, Mechatronics, 15(2005), pp.239-249.

DOI: 10.1016/j.mechatronics.2004.07.007

Google Scholar

[3] J. Stroscio, W. Kaiser, Scanning tunneling microscopy, New York: Academic Press, (1993).

Google Scholar

[4] S. Devasia, E. Eleftheriou, and S. O. Reza Moheimani, A Survey of Control Issues in Nanopositioning, IEEE Transactions on Control Systems Technology, 15 (2007), pp.802-823.

DOI: 10.1109/tcst.2007.903345

Google Scholar

[5] Y T. Liu, K. M. Chang, and W. Z. Li, Model reference adaptive control for a piezo-positioning system, Precision Engineering, 34 (2010), pp.62-69.

DOI: 10.1016/j.precisioneng.2009.03.006

Google Scholar

[6] L. L. Howell, A. Midha, A loop closure theory for the analysis and synthesis of compliant mechanisms, Journal of Mechanical Design, 118 (1996), pp.121-125.

DOI: 10.1115/1.2826842

Google Scholar

[7] P. Ge, M. Jouaneh, Tracking control of a piezoelectric actuator, IEEE Trans. Control Syst Technol, 4 (1996), pp.209-216.

DOI: 10.1109/87.491195

Google Scholar

[8] G. S. Choi, Y. A. Lim, and G. H. Choi, Tracking position control of piezoelectric actuator for periodic reference inputs. Mechatronics, 12 (2002), p.669–684.

DOI: 10.1016/s0957-4158(01)00020-4

Google Scholar

[9] H. C. Liaw, B. Shirinzadeh, and J. Smith, Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation, Mechatronics, 18 (2008), pp.111-120.

DOI: 10.1016/j.mechatronics.2007.09.002

Google Scholar

[10] W. J. Sung, S. C. Lee, and K.H. You, Ultra-precision positioning using adaptive fuzzy-Kalman filter observer, Precision Engineering, 34 (2010), pp.195-199.

DOI: 10.1016/j.precisioneng.2009.03.002

Google Scholar

[11] P. K. Huang, P. H. Shieh, F. J. Lin, and H. J. Shieh, Sliding-mode control for a two-dimensional piezo-positioning stage, IET Control Theory Application, 1(2007), pp.1104-1113.

DOI: 10.1049/iet-cta:20060371

Google Scholar

[12] S. J. Huang, C. M. Chiu, Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table, IEEE Transactions of the Institute of Measurement & Control, 2009, 31(2): 181-203.

DOI: 10.1177/0142331208093938

Google Scholar

[13] J. H. Mathews, K. K. Fink, Numerical methods using matlab, New Jersey, Prentice Hall, (2004).

Google Scholar

[14] F. J. Lin, H. J. Shieh, and P. K. Huang, Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism, IEEE Transactions on Neural Networks, 17 (2006), pp.432-444.

DOI: 10.1109/tnn.2005.863473

Google Scholar