[1]
K. Hane, T. Kobayashi, F. Hu, and Y. Kanamori, Variable optical reflectance of a self-supported Si grating, Appl. Phys. Lett. 88 (2006) 141109 - 141109-3.
DOI: 10.1063/1.2193989
Google Scholar
[2]
Y. Yu, W. Yuan, T. Li, and B. Yan, Development of a micromechanical pitch-tunable grating with reflective/transmissive dual working modes, J. Micromech. Microeng. 20 (2010).
DOI: 10.1088/0960-1317/20/6/065002
Google Scholar
[3]
Yongjin Wang, Yoshiaki Kanamori, Kazuhiro Hane, Pitch-variable blazed grating consisting of freestanding silicon beams, Opt. Express. 17 (2009) 4419–4426.
DOI: 10.1364/oe.17.004419
Google Scholar
[4]
Y. Wang, Y. Kanamori, and K. Hane, Pitch-variable MEMS grating with 4-level blazed surface, Solid-State Sensors, (2009) 1345-1348.
DOI: 10.1109/sensor.2009.5285850
Google Scholar
[5]
R. Lockhart, M. Tormen, P. Niedermann, T. Overstolz, A. Hoogerwerf, and R. P. Staanley, High-efficiency MEMS tunable gratings for external cavity lasers and microspectrometers, Proc. IEEE/LEOS Int. Opt. MEMS Nanophoto. (2008) 33–34.
DOI: 10.1109/omems.2008.4607814
Google Scholar
[6]
K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, Submicron comb-drive actuator fabricated on thin single crystalline silicon layer, IEEE Trans. Ind. Electron. 56 (2009) 991–995.
DOI: 10.1109/tie.2008.2006934
Google Scholar
[7]
Hidehisa Sameshima, Takuma Tanae, and Kazuhiro Hane, A GaN Electromechanical Tunable Grating on Si Substrate, IEEE Photonics Technology Letters. 23 (2011) 281-283.
DOI: 10.1109/lpt.2010.2102346
Google Scholar
[8]
C. W. Wong, Y. Jeon, G. Barbastathis, and S. -G. Kim, Analog piezoelectric-driven tunable gratings with nanometer resolution, J. Microeletromech. Syst. 13 (2004) 998–1005.
DOI: 10.1109/jmems.2004.839592
Google Scholar
[9]
X. Li, C. Antoine, D. Lee, J. -S. Wang, and O. Solgaard, Tunable blazed gratings. J. Microeletromech, Syst. 15 (2006) 597–604.
DOI: 10.1109/jmems.2006.872241
Google Scholar
[10]
S. C. Truxal, K. Kurabayashi, and Y. -C. Tung, MEMS tunable polymer grating for advantageous spectroscopic measurements, Proc. SPIE. 6715 (2007) 67150F-1–67150F-7.
DOI: 10.1117/12.754385
Google Scholar
[11]
M. Aschwanden, D. Niederer, and A. Stemmer, Tunable transmission grating based on dielectric elastomer actuator, Proc. SPIE. 6927 (2007) 692711R-1–692711R-12.
DOI: 10.1117/12.776100
Google Scholar
[12]
Yiting Yu, Weizheng Yuan, Ruikang Sun, Dayong Qiao, Bin Yan, A Strategy to Efficiently Extend the Change Rate of Period for Comb-Drive Micromechanical Pitch-Tunable Gratings, Microelectromechanical Systems. 19 (2010) 1180-1185.
DOI: 10.1109/jmems.2010.2067205
Google Scholar
[13]
Wei-Chuan Shih, Sang-Gook Kim, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process, Microelectromechanical Systems. 15 (2006) 763-769.
DOI: 10.1109/jmems.2006.879369
Google Scholar
[14]
M. G. Moharam and T. K. Gaylord, Rigorous coupled wave analysis of planar grating diffraction, J. Opt. Soc. Am. 71 (1981) 811–818.
DOI: 10.1364/josa.71.000811
Google Scholar
[15]
Y. Fukuta, H. Fujita, H. Toshiyoshi, Solution hydrofluoric acid sacrificial release technique for micro electro mechanical systems using labware, Jpn. J. Appl. Phys. 42 (2003) 3690-3694.
DOI: 10.1143/jjap.42.3690
Google Scholar