An Electromechanical Tunable Grating on Silicon-on-Insulator Platform

Article Preview

Abstract:

We report here the design and fabrication of an electromechanical tunable grating on silicon-on-insulator (SOI) wafer. The tunable grating consists of a submicron electrostatic comb actuator and an expandable freestanding grating. Rigorous coupled-wave analysis (RCWA) method is utilized to analyze the optical responses of freestanding grating with different periods and filling factors. Obvious shift of the resonant peaks is obtained by changing the grating period and the grating filling factor. The electromechanical tunable grating is realized on the silicon device layer by a combination of electron beam (EB) lithography, deep reactive ion etching (DRIE) and wet etching. Scanning electron microscope (SEM) micrographs indicate that the grating is well fabricated. Via applying biased voltage, the force generated by the electrostatic comb actuator can modulate periods and filling factors of the freestanding grating. The electromechanical tunable grating with simple fabrication process shows bright prospects for optical telecoms and miniaturized spectrometers.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

1277-1282

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hane, T. Kobayashi, F. Hu, and Y. Kanamori, Variable optical reflectance of a self-supported Si grating, Appl. Phys. Lett. 88 (2006) 141109 - 141109-3.

DOI: 10.1063/1.2193989

Google Scholar

[2] Y. Yu, W. Yuan, T. Li, and B. Yan, Development of a micromechanical pitch-tunable grating with reflective/transmissive dual working modes, J. Micromech. Microeng. 20 (2010).

DOI: 10.1088/0960-1317/20/6/065002

Google Scholar

[3] Yongjin Wang, Yoshiaki Kanamori, Kazuhiro Hane, Pitch-variable blazed grating consisting of freestanding silicon beams, Opt. Express. 17 (2009) 4419–4426.

DOI: 10.1364/oe.17.004419

Google Scholar

[4] Y. Wang, Y. Kanamori, and K. Hane, Pitch-variable MEMS grating with 4-level blazed surface, Solid-State Sensors, (2009) 1345-1348.

DOI: 10.1109/sensor.2009.5285850

Google Scholar

[5] R. Lockhart, M. Tormen, P. Niedermann, T. Overstolz, A. Hoogerwerf, and R. P. Staanley, High-efficiency MEMS tunable gratings for external cavity lasers and microspectrometers, Proc. IEEE/LEOS Int. Opt. MEMS Nanophoto. (2008) 33–34.

DOI: 10.1109/omems.2008.4607814

Google Scholar

[6] K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, Submicron comb-drive actuator fabricated on thin single crystalline silicon layer, IEEE Trans. Ind. Electron. 56 (2009) 991–995.

DOI: 10.1109/tie.2008.2006934

Google Scholar

[7] Hidehisa Sameshima, Takuma Tanae, and Kazuhiro Hane, A GaN Electromechanical Tunable Grating on Si Substrate, IEEE Photonics Technology Letters. 23 (2011) 281-283.

DOI: 10.1109/lpt.2010.2102346

Google Scholar

[8] C. W. Wong, Y. Jeon, G. Barbastathis, and S. -G. Kim, Analog piezoelectric-driven tunable gratings with nanometer resolution, J. Microeletromech. Syst. 13 (2004) 998–1005.

DOI: 10.1109/jmems.2004.839592

Google Scholar

[9] X. Li, C. Antoine, D. Lee, J. -S. Wang, and O. Solgaard, Tunable blazed gratings. J. Microeletromech, Syst. 15 (2006) 597–604.

DOI: 10.1109/jmems.2006.872241

Google Scholar

[10] S. C. Truxal, K. Kurabayashi, and Y. -C. Tung, MEMS tunable polymer grating for advantageous spectroscopic measurements, Proc. SPIE. 6715 (2007) 67150F-1–67150F-7.

DOI: 10.1117/12.754385

Google Scholar

[11] M. Aschwanden, D. Niederer, and A. Stemmer, Tunable transmission grating based on dielectric elastomer actuator, Proc. SPIE. 6927 (2007) 692711R-1–692711R-12.

DOI: 10.1117/12.776100

Google Scholar

[12] Yiting Yu, Weizheng Yuan, Ruikang Sun, Dayong Qiao, Bin Yan, A Strategy to Efficiently Extend the Change Rate of Period for Comb-Drive Micromechanical Pitch-Tunable Gratings, Microelectromechanical Systems. 19 (2010) 1180-1185.

DOI: 10.1109/jmems.2010.2067205

Google Scholar

[13] Wei-Chuan Shih, Sang-Gook Kim, High-Resolution Electrostatic Analog Tunable Grating With a Single-Mask Fabrication Process, Microelectromechanical Systems. 15 (2006) 763-769.

DOI: 10.1109/jmems.2006.879369

Google Scholar

[14] M. G. Moharam and T. K. Gaylord, Rigorous coupled wave analysis of planar grating diffraction, J. Opt. Soc. Am. 71 (1981) 811–818.

DOI: 10.1364/josa.71.000811

Google Scholar

[15] Y. Fukuta, H. Fujita, H. Toshiyoshi, Solution hydrofluoric acid sacrificial release technique for micro electro mechanical systems using labware, Jpn. J. Appl. Phys. 42 (2003) 3690-3694.

DOI: 10.1143/jjap.42.3690

Google Scholar