[1]
A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials. 6 (2007) 183-191.
Google Scholar
[2]
K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.
DOI: 10.1016/j.ssc.2008.02.024
Google Scholar
[3]
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M. I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials. 6 (2007) 652-655.
DOI: 10.1038/nmat1967
Google Scholar
[4]
J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nature Materials. 7 (2008) 151-157.
DOI: 10.1038/nmat2082
Google Scholar
[5]
T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science. 313 (2006) 951-954.
DOI: 10.1126/science.1130681
Google Scholar
[6]
F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Phase-Coherent Transport in Graphene Quantum Billiards, Science. 317 (2007) 1530-1533.
DOI: 10.1126/science.1144359
Google Scholar
[7]
F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-Variable Optical Transitions in Graphene, Science. 320 (2008) 206-209.
DOI: 10.1126/science.1152793
Google Scholar
[8]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science. 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[9]
G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Scattering and interference in epitaxial graphene, Science. 317 (2007) 219-222.
DOI: 10.1126/science.1142882
Google Scholar
[10]
C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors, Advanced Materials. 20 (2008) 3289-3293.
DOI: 10.1002/adma.200800150
Google Scholar
[11]
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letter. 9 (2009) 30-35.
DOI: 10.1021/nl801827v
Google Scholar
[12]
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo3, R.S. Ruoff1, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science. 324 (2009) 1312-1314.
DOI: 10.1126/science.1171245
Google Scholar
[13]
W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition, Carbon. 49 (2011) 4122-4130.
DOI: 10.1016/j.carbon.2011.05.047
Google Scholar
[14]
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letter. 9 (2009) 4359-4363.
DOI: 10.1021/nl902623y
Google Scholar
[15]
D. Wei, Y. Liu, Controllable Synthesis of Graphene and Its Applications, Advanced Materials. 22 (2010) 3225-3241.
DOI: 10.1002/adma.200904144
Google Scholar
[16]
X. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E.M. Vogel, E. Voelkl, L. Colombo, R.S. Ruoff, Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process, Nano Letter. 10 (2010).
DOI: 10.1021/nl101629g
Google Scholar
[17]
C.A. Howsare, X. Weng, V. Bojan, D. Snyder, J.A. Robinson, Substrate considerations for graphene synthesis on thin copper films, Nanotechnology. 23 (2009) 135601.
DOI: 10.1088/0957-4484/23/13/135601
Google Scholar
[18]
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature. 457 (2009) 706-710.
DOI: 10.1038/nature07719
Google Scholar
[19]
Z. Peng, Z. Yan, Z. Sun, and J.M. Tour, Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel, ACS Nano. 5 (2011) 8241-8247.
DOI: 10.1021/nn202923y
Google Scholar
[20]
Information on http: /www. asylumresearch. com/Applications/Orca/Orca. shtml.
Google Scholar