Graphene Synthesis on Specified Location

Article Preview

Abstract:

The synthesis of graphene using chemical vapor deposition (CVD) on patterned Cu thin films was studied. A series of experiments were carried out to optimize the CVD process of graphene synthesis on Cu thin films and the optimal growth conditions were obtained. Consequently, few-layer graphene which had been characterized by optical microscopy and Raman spectroscopy atomic was synthesized. Conductive atomic force microscopy (AFM) was used to measure the conductivity of metal-graphene contact samples and the result showed that the conductivity of CVD synthesized graphene on Cu thin films is higher than the transferred graphene on same Cu thin films, which was synthesized on 25 μm Cu foils by conventional CVD method.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

159-164

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature Materials. 6 (2007) 183-191.

Google Scholar

[2] K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351-355.

DOI: 10.1016/j.ssc.2008.02.024

Google Scholar

[3] F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M. I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nature Materials. 6 (2007) 652-655.

DOI: 10.1038/nmat1967

Google Scholar

[4] J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Gate-induced insulating state in bilayer graphene devices, Nature Materials. 7 (2008) 151-157.

DOI: 10.1038/nmat2082

Google Scholar

[5] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science. 313 (2006) 951-954.

DOI: 10.1126/science.1130681

Google Scholar

[6] F. Miao, S. Wijeratne, Y. Zhang, U.C. Coskun, W. Bao, C.N. Lau, Phase-Coherent Transport in Graphene Quantum Billiards, Science. 317 (2007) 1530-1533.

DOI: 10.1126/science.1144359

Google Scholar

[7] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Gate-Variable Optical Transitions in Graphene, Science. 320 (2008) 206-209.

DOI: 10.1126/science.1152793

Google Scholar

[8] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science. 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[9] G.M. Rutter, J.N. Crain, N.P. Guisinger, T. Li, P.N. First, J.A. Stroscio, Scattering and interference in epitaxial graphene, Science. 317 (2007) 219-222.

DOI: 10.1126/science.1142882

Google Scholar

[10] C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Patterned Graphene as Source/Drain Electrodes for Bottom-Contact Organic Field-Effect Transistors, Advanced Materials. 20 (2008) 3289-3293.

DOI: 10.1002/adma.200800150

Google Scholar

[11] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letter. 9 (2009) 30-35.

DOI: 10.1021/nl801827v

Google Scholar

[12] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo3, R.S. Ruoff1, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science. 324 (2009) 1312-1314.

DOI: 10.1126/science.1171245

Google Scholar

[13] W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition, Carbon. 49 (2011) 4122-4130.

DOI: 10.1016/j.carbon.2011.05.047

Google Scholar

[14] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, R.S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letter. 9 (2009) 4359-4363.

DOI: 10.1021/nl902623y

Google Scholar

[15] D. Wei, Y. Liu, Controllable Synthesis of Graphene and Its Applications, Advanced Materials. 22 (2010) 3225-3241.

DOI: 10.1002/adma.200904144

Google Scholar

[16] X. Li, C.W. Magnuson, A. Venugopal, J. An, J.W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E.M. Vogel, E. Voelkl, L. Colombo, R.S. Ruoff, Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process, Nano Letter. 10 (2010).

DOI: 10.1021/nl101629g

Google Scholar

[17] C.A. Howsare, X. Weng, V. Bojan, D. Snyder, J.A. Robinson, Substrate considerations for graphene synthesis on thin copper films, Nanotechnology. 23 (2009) 135601.

DOI: 10.1088/0957-4484/23/13/135601

Google Scholar

[18] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature. 457 (2009) 706-710.

DOI: 10.1038/nature07719

Google Scholar

[19] Z. Peng, Z. Yan, Z. Sun, and J.M. Tour, Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel, ACS Nano. 5 (2011) 8241-8247.

DOI: 10.1021/nn202923y

Google Scholar

[20] Information on http: /www. asylumresearch. com/Applications/Orca/Orca. shtml.

Google Scholar