[1]
Nakajima. A, Recent Studies on Super-Hydrophobic Films, Monatsh. Chem. 132 (2001) 31-41.
Google Scholar
[2]
SUN. T, Bioinspired Surfaces withSpecial Wettability, Acc. Chem. Res, 38 (2005) 644-652.
Google Scholar
[3]
Zhang. X, Superhydrophobic surfaces: from structural control to functional Application, J. Mater. Chem. 18 (2008) 621-633.
Google Scholar
[4]
C. Neinhuis, Characterization and Distribution of ater-repellent, Self-cleaning Plant Surfaces , Annals of Botany, 79 (1997) 667-677.
DOI: 10.1006/anbo.1997.0400
Google Scholar
[5]
Wei Chen, Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples, Langmuir. 15 (1999) 3395–3399.
DOI: 10.1021/la990074s
Google Scholar
[6]
S.R. Coulson, super-repellent composite fluoropolymer surface, J. Phys. Chem. B. 104 (2000) 8836–8840.
Google Scholar
[7]
R. Fu rstner, Wetting and self- cleaning properties of artificial superhydrophobic surfaces, Langmui. 21 (2005) 956-961.
Google Scholar
[8]
L. Feng, Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers, Angew. Chem. Int. Ed. 41 (2002) 1221-1223.
DOI: 10.1002/1521-3773(20020402)41:7<1221::aid-anie1221>3.0.co;2-g
Google Scholar
[9]
L. Feng, Creation of super-hydrophobic surface from amphiphilic polymer, Angew. Chem. Int. Ed. 42 ( 2003) 800-802.
Google Scholar
[10]
Cao. M, Fabrication of highly antireflective silicon surfaces with superhydrophobicity, J Phys Chem B. 110 (2006) 13072-13075.
DOI: 10.1021/jp061373a
Google Scholar
[11]
Hong. YC, Superhydrophobicity of a material made from multiwallede carbon nanotubes, Appl. Phys. Lett. 88 (2006) 244101-244103.
DOI: 10.1063/1.2210449
Google Scholar
[12]
Kiyoharu Tadanaga, Super-Water-Repellent Al2O3 Coating Films with High Transparency, J. Am. Ceram. Soc. 80 ( 1 997) 1040–1042.
DOI: 10.1111/j.1151-2916.1997.tb02943.x
Google Scholar
[13]
E. Balaur, Wetting behaviour of layers of TiO2 nanotubes with different diameters, J Mater Chem. 15 (2005) 4488–4491.
DOI: 10.1039/b509672c
Google Scholar
[14]
Nicolas. Verplanck, Wettability Switching Techniques on S uperhydrophobic Surfaces, Nanoscale. Res. Lett. 2 (2007) 577–596.
Google Scholar
[15]
Sung-Soo Yoon, Switchable wettability of vertical Si nanowire array surface by simple contact-printing of siloxane oligomers and chemical washing, J. Mater. Chem. 22 (2012) 10625-10630.
DOI: 10.1039/c2jm30619k
Google Scholar
[16]
B. S. Kim, Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings, Langmuir. Vol. 27 (2011) 10148-10156.
DOI: 10.1021/la200940j
Google Scholar
[17]
Yannick. Coffinier, Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates, Comptes Rendus Chimie. 16 (2013) 65-72.
DOI: 10.1016/j.crci.2012.08.011
Google Scholar
[18]
Florian Lapierre, Reversible Electrowetting on Superhydrophobic Double-Nanotextured Surfaces, Langmuir. 25 (2009) 6551–6558.
DOI: 10.1021/la803756f
Google Scholar
[19]
F. Lapierre, Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures, Araday Discuss. 146 (2010) 125–139.
DOI: 10.1039/b925544c
Google Scholar
[20]
Tommaso Baldacchini, Superhydrophobic Surfaces Prepared by Microstructuring of Silicon Using a Femtosecond Laser, Langmuir. 22 (2006) 4917-491.
DOI: 10.1021/la053374k
Google Scholar
[21]
Wang. M. F, A Nonlithographic Top-Down Electrochemical Approach for Creating Hierarchical (Micro-Nano) Superhydrophobic Silicon Surfaces, Langmuir. 23 (2007 ) 2300-2303.
DOI: 10.1021/la063230l
Google Scholar
[22]
Yang He, Superhydrophobic silicon surfaces with micro–nano hierarchical structures via deep reactive ion etching and galvanic etching, Journal of Colloid and Interface Science. 364 (2011) 219–229.
DOI: 10.1016/j.jcis.2011.07.030
Google Scholar