A Study of Abrasive Rotating Velocity Effect on Monocrystalline Silicon in Ultra-Precision Mechanical Polishing via Molecular Dynamic Simulation

Article Preview

Abstract:

A three-dimensional molecular dynamics (MD) simulation is conducted to investigate the effect of the abrasive rotating velocity on monocrystalline silicon specimen by mechanical polishing at atomistic scale. By monitoring relative positions of atoms in the monocrystalline silicon specimen, the microstructure of monocrystalline silicon is clearly identified and analyzed. The simulation results show that better machined surface quality is obtained and more phase transformation atoms occur with small abrasive rotating velocity. When the abrasive rotating is high, the surface quality deteriorates and amorphous layer thickens.These results provide us an effective approach to analyze the mechanism of material deformation and the formation of the machined surface after ultra-precision polishing.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

362-369

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Mylvaganam, L.C. Zhang, Nanotwinning in monocrystalline silicon upon nanoscratching, Scripta Mater. 65 (2011) 214-216.

DOI: 10.1016/j.scriptamat.2011.04.012

Google Scholar

[2] X.S. Han, Y.Z. Hu, S.Y. Yu, Investigation of material removal mechanism of silicon wafer in the chemical mechanical polishing process using molecular dynamics simulation method, Appl. Phys. A, 95 (2009) 899.

DOI: 10.1007/s00339-009-5097-2

Google Scholar

[3] P.M. Agrawal, L.M. Raff, S. Bukkapatnam, R. Komanduri, Molecular dynamics investigation on polishing of a silicon wafer with a diamond abrasive, Appl. Phys. A, 100 (2010) 89-104.

DOI: 10.1007/s00339-010-5570-y

Google Scholar

[4] L.N. Si, D. Guo, J.B. Luo, X.C. Lu, Monoatomic layer removal mechanism in chemical mechanical polishing process: A molecular dynamics study, Appl. Phys. 107 (2010) 064310.

DOI: 10.1063/1.3327448

Google Scholar

[5] L.C. Zhang, H. Tanaka, Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding, Tribol. Int. 31(1998) 425-433.

DOI: 10.1016/s0301-679x(98)00064-4

Google Scholar

[6] I. Zarudi W.C.D. Cheong, J. Zou, L.C. Zhang, Atomistic structure of monocrystalline silicon in surface nano-modification, Nanotechnology, 15 (2004) 104-107.

DOI: 10.1088/0957-4484/15/1/020

Google Scholar

[7] L. Zhang, H.W. Zhao, Z.C. Ma, H. Huang, C.L. Shi, W.S. Zhang, A study on phase transformation of monocrystalline silicon due to ultra-precision polishing by molecular dynamics simulation, AIP Advances, 2 (2012) 042116.

DOI: 10.1063/1.4763462

Google Scholar

[8] S. Goel, X. Luo, R.L. Reuben, W.B. Rashid, Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting, Nano. Res. Lett. 6 (2011) 589-598.

DOI: 10.1186/1556-276x-6-589

Google Scholar

[9] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B, 39 (1989) 5566-5568.

DOI: 10.1103/physrevb.39.5566

Google Scholar

[10] J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett. 56 (1989) 632.

Google Scholar

[11] W.C.D. Cheong, L.C. Zhang, Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation, Nanotechnology, 11 (2000) 173-180.

DOI: 10.1088/0957-4484/11/3/307

Google Scholar

[12] L.C. Zhang, H. Tanaka, Z. Liu, Proceedings of the 19th International Congress on Theoretical Applied Mechanics, Kyoto, Japan, (1996).

Google Scholar

[13] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys. 117 (1995) 1.

Google Scholar

[14] S. Plimpton, R. Pollock, M. Stevens, in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, Minnesota, USA, (1997).

Google Scholar

[15] J. Li, AtomEye: an efficient atomistic configuration viewer. Trans. Jpn. Soc. Comput. Eng. Sci. 11(2003) 173-177.

DOI: 10.1088/0965-0393/11/2/305

Google Scholar