Preparation of TiO2 (Au) Nanotubes by Hydrothermal Method for Photocatalytic Reduction of Cd2+ Ions

Article Preview

Abstract:

Highly dispersed TiO2 nanotubes (TiO2-NTs) were synthesized via the reaction of anatase TiO2 powder with NaOH solution. Au nanoparticles of about 5 nm were deposited on the surface of TiO2-NTs with hydrothermal reduction method. The prepared nanocomposites were well characterized with TEM and XRD. Their photocatalytic properties and reducing ability were investigated by UV-Vis absorption and photocatalytic reduction of Cd2+ ions with different amount of TiO2-NTs and TiO2-NTs (Au) varying from 0.1g to 0.001g. The results from absorption patterns and AAS showed that the absorption intensity of TiO2-NTs (Au) was higher compared with that of TiO2-NTs. Moreover, the concentration of remanent Cd2+ (0.48mg/L) using TiO2-NTs (Au) was lower than that of Cd2+ (0.65mg/L) using TiO2-NTs.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 609-610)

Pages:

375-381

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K Y. Jung, I. L, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, WaterResearch. 35 (200l) 135-142.

DOI: 10.1016/s0043-1354(00)00098-1

Google Scholar

[2] G. Colon, M C. Hidalgo, J A. Navio, Photocatalytic deactivation of commercial TiO2 samples during simultaneous photo reduction of Cr(VI)and photo oxidation of salicylic acid, Journal of Photochemistry and Photobiology A: Chemistry. 138 (2001).

DOI: 10.1016/s1010-6030(00)00372-5

Google Scholar

[3] H H. Liu, A X. Zhang, H S. Wu. Solar photocatalytic degradation of p-nitropenol assisted by cuprous oxide, Environmental Chemistry. 23 (2004) 490-494.

Google Scholar

[4] L.B. Khalil, M.W. Rophael, W.E. Mourad, The removal of the toxic Hg(II) salts from water by photocatalysis, Applied Catalysis B: Environmental. 36 (2002) 125-130.

DOI: 10.1016/s0926-3373(01)00285-5

Google Scholar

[5] X L. Wang, S.O. Pehkonen, K. Ajay. Ray, Photocatalytic reduction of Hg(II) on two commercial TiO2 catalysts, Electrochimica Acta. 49 (2004) 1435-1444.

DOI: 10.1016/s0013-4686(03)00907-1

Google Scholar

[6] S.G. Schrank, H. J José, R.F.P. Moreira, Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2slurry reactor, J. Photochem. Photobio.: A., 147 (2002) 71~76.

DOI: 10.1016/s1010-6030(01)00626-8

Google Scholar

[7] G H. Wang, F. Wu, X. Zhang, M D. Luo, N S. Deng, Enhanced TiO2 photocatalytic degradation of bisphenol A by βcyclodextrin in suspended solutions, Journal of Photochemistry and Photobiology A: Chemistry. 5 (2005) 1-8.

DOI: 10.1016/j.jphotochem.2005.07.011

Google Scholar

[8] Bo Sun, P. Ettireddy, Reddy, G. Panagiotiso, Smirniotis, Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis, Environ. Sci. Technol. 39 (2005) 6251-6259.

DOI: 10.1021/es0480872

Google Scholar

[9] A. Molinari, R. Amadelli, V. Carassiti, Phororedox and photocatalytic processes on Fe (III) porphyr in surface modified nano-crystalline TiO2, J Mol Catal A. 158 (2000) 521-531.

DOI: 10.1016/s1381-1169(99)00446-x

Google Scholar

[10] C K. Xu, R. Killmeyer, M. Gray, Photocatalytic effect of carbon modified n-TiO2 nanoparticles under visible light illumination, Appl Catal B. 64 (2006) 312-317.

DOI: 10.1016/j.apcatb.2005.11.008

Google Scholar

[11] R. Asahi, T. Morikawa, T. Ohwaki, Visible light photocatalysis in Nitrogen-doped titanium oxides, Science. 293 (2001) 269-171.

DOI: 10.1126/science.1061051

Google Scholar

[12] B. Ohtani, K. Iwai, S. Nishimoto, S. Sato, Role of Platinum Deposits on Titanium(IV) Oxide Particles:  Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions, J. Phys. Chem. B. 101 (1997) 3349–3359.

DOI: 10.1021/jp962060q

Google Scholar

[13] F.B. Li, X.Z. Li, The enhancement of photo-degradation efficiency using Pt-TiO2 catalyst, Chemosphere. 48 (2002) 1103–1111.

DOI: 10.1016/s0045-6535(02)00201-1

Google Scholar

[14] D.V. Bavykin, A.A. Lapkin, P.K. Plucinki, L. Torrente-Murciano, J.M. Friedrich, F.C. Walsh. Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes, Top. Catal. 39 (2006) 151.

DOI: 10.1007/s11244-006-0051-4

Google Scholar

[15] L.C. Sikhwivhulu, N.J. Coville, T. Ntho, M.S. Scurrell, Potassium titanate: An alternative support for gold catalyzed carbon monoxide oxidation, Catal. Lett, 123 (2008) 193-197.

DOI: 10.1007/s10562-008-9439-z

Google Scholar

[16] J J. Yang, Z S. Jin, X D. Wang, W. Li, J W. Zhang, Zhang S L, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans. 20 (2003) 3898-3901.

DOI: 10.1039/b305585j

Google Scholar

[17] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of Titanium Oxide Nanotube, Langmuir. 14 (1998) 3160 –3163.

DOI: 10.1021/la9713816

Google Scholar

[18] X.Z. Li, F.B. Li, Study of Au/Au(3+)-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment, Environ. Sci. Technol. 35 (2001) 2381–2387.

DOI: 10.1021/es001752w

Google Scholar

[19] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/Au Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration, J. Am. Chem. Soc. 126 (2004) 4943–4950.

DOI: 10.1021/ja0315199

Google Scholar

[20] Y.C. Liu, L.C. Juang, Electrochemical Methods for the Preparation of Gold-Coated TiO2 Nanoparticles with Variable Coverages, Langmuir. 20 (2004) 6951–6955.

DOI: 10.1021/la049234c

Google Scholar