[1]
A. Kaya, A. Schumpe, Surfactant adsorption rather than shuttle effect", Chem. Eng. Sci. 60 (2005) 6504-6510.
DOI: 10.1016/j.ces.2005.03.002
Google Scholar
[2]
J.F. Demmink, A. Mehra, A.A.C.M. Beenackers, Gas absorption in the presence of particles showing interfacial affinity: case of fine sulfur precipitates, Chem. Eng. Sci. 53 (1998) 2885-2902.
DOI: 10.1016/s0009-2509(98)00104-3
Google Scholar
[3]
M.V. Dagaonkar, H.J. Heeres, A.A.C. M Beenackers, V.G. Pangarkar, The application of fine TiO2 particles for enhanced gas absorption, Chem. Eng. J. 92 (2003) 151-159.
DOI: 10.1016/s1385-8947(02)00188-2
Google Scholar
[4]
E. Nagy, A. Moser, Three-phase mass transfer: Improved pseudo-homogeneous model, AIChE J. 41 (1995) 23-34.
DOI: 10.1002/aic.690410104
Google Scholar
[5]
D.W.F. Brilman, M.J.V. Goldschmidt, G.F. Versteeg, W.P.M. van Swaaij, Heterogeneous mass transfer models for gas absorption in multiphase systems, Chem. Eng. Sci. 55 (2000) 2793-2812.
DOI: 10.1016/s0009-2509(99)00491-1
Google Scholar
[6]
S. Kumar, S.K. Prasad, J. Banerjee, Analysis of flow and thermal field in nanofluid using a single phase thermal dispersion model, Appl. Math. Model. 34 (2010) 573-592.
DOI: 10.1016/j.apm.2009.06.026
Google Scholar
[7]
A.K. Santra, S. Sen, N. Chakraborty, Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates, Int. J. Therm. Sci. 48 (2009) 391-400.
DOI: 10.1016/j.ijthermalsci.2008.10.004
Google Scholar
[8]
S.H. Noie, H.S. Zeinal, M. Kahani, S.M. Nowee, Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon, Int. J. Heat Fluid Flow. 30 (2009) 700-705.
DOI: 10.1016/j.ijheatfluidflow.2009.03.001
Google Scholar
[9]
X. H. Ma, F. M. Su, J. B. Chen, T. Bai, Z. X. Han, Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid, Int. Commun. Heat Mass. 36 (2009) 657-660.
DOI: 10.1016/j.icheatmasstransfer.2009.02.016
Google Scholar
[10]
S. Krishnamurthy, P. Bhattacharya, P.E. Phelan, R.S. Prasher, Enhanced mass transport in nanofluids, Nano Lett. 6 (2006) 419-423.
DOI: 10.1021/nl0522532
Google Scholar
[11]
J.K. Kim, J.Y. Jung, Y.T. Kang, The effect of nano-particles on the bubble absorption performanc in a binary nanofluid, Int. J. Refrig. 29 (2006) 22-29.
Google Scholar
[12]
J.K. Kim, J.Y. Jung, Y.T. Kang, Absorption performance enhancement by nanoparticles and chemical sufactants in binary nanofluids, Int. J. Refrig. 30 (2007) 50-57.
Google Scholar
[13]
B. Olle, S. Bucak, T.C. Holmes, L. Bromberg, et al., Enhancement of oxygen mass transfer using functionalized magnetic nanopartices, Ind. Eng. Chem. Res. 45 (2006) 4355-4363.
DOI: 10.1021/ie051348b
Google Scholar
[14]
E. Nagy, T. Feczkó, B. Koroknai, Enhancement of oxygen mass transfer rate in the presence of nanosized particles, Chem. Eng. Sci. 62 (2007) 7391-7398.
DOI: 10.1016/j.ces.2007.08.064
Google Scholar
[15]
R. Prasher, P.E. Phelan, P. Bhattacharya, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nanoletters. 6 (2006a ) 1529-1534.
DOI: 10.1021/nl060992s
Google Scholar
[16]
R. Prasher, P. Bhattacharya, P.E. Phelan, Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids, Trans. ASME, J. Heat Transfer, 128 (2006), 588-595.
DOI: 10.1115/1.2188509
Google Scholar
[17]
S.M. Lu, Y.G. Ma, C.Y. Zhu, S.H. Shen, The enhancement of CO2 chemical absorption by K2CO3 aqueous solution in the presence of activated carbon particles, Chinese J. Chem. Eng. 15 (2007) 842-846.
DOI: 10.1016/s1004-9541(08)60012-9
Google Scholar
[18]
S. M. Lu, Y.G. Ma, S.H. Shen, C.Y. Zhu, The effect of hydrophobic modification of zeolites on CO2 absorption in different solvents, Braz. J. Chem. Eng. 27(2010) 327 - 338.
Google Scholar