[1]
M.T. Bjork, B.J. Ohlsson, T. Sass, et al. One-dimensional heterostuructures in semiconductor nanowhiskers, Applied Physics Letters. 80 (2002) 1058-1060.
Google Scholar
[2]
C.Y. Chen, Y.G. Liu, Recent progress of II-VI nanosized-semiconductors, Guangdong Chemical Industry. 33 (2006) 71-74.
Google Scholar
[3]
C.Y. Kao, C.L. Hsin, C.W. Huang, S.Y. Yu, C.W. Wang, P.H. Yeh and W.W. Wu, High-yield synthesis of ZnO nanowire arrays and their opto-electrical properties, Nanoscale. 4 (2012) 1476-1480.
DOI: 10.1039/c1nr10742a
Google Scholar
[4]
Z. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics, Nano Today. 5 (2010) 540-552.
DOI: 10.1016/j.nantod.2010.10.008
Google Scholar
[5]
L.S. Mende, J.M. Driscoll, ZnO-nanostructures, defects, and devices, Materials Today. 10 (2007) 40-48.
DOI: 10.1016/s1369-7021(07)70078-0
Google Scholar
[6]
Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter. 16 (2004) R829-R858.
DOI: 10.1088/0953-8984/16/25/r01
Google Scholar
[7]
L.M. Dorogin, S. Vlassov, B. Polyakov, M. Antsov, R. Lohmus, I. Kink, and A.E. Romanov, Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling, Phys. Status Solid B. 250 (2013).
DOI: 10.1002/pssb.201248445
Google Scholar
[8]
A. Asthana, K. Momeni, A. Prasad, Y.K. Yap and R.S. Yassar, In situ observation of size-scale effects on the mechanical properties of ZnO nanowire, Nanotechnology. 22 (2011) 265712- 265714.
DOI: 10.1088/0957-4484/22/26/265712
Google Scholar
[9]
J. Guo, B. Wen, R. Melnik, Molecular dynamics study on ZnO nanowires mechanical properties: strain rate temperature and size dependent effects, J. Comput. Theor. Nanosci. 9 (2012) 2138-2143.
DOI: 10.1166/jctn.2012.2629
Google Scholar
[10]
B. Polyakov, L.M. Dorogin, S. Vlassov, I. Kink, A.E. Romanov, and R. Lohmu, Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope, Micron. 43 (2012) 1140-1146.
DOI: 10.1016/j.micron.2012.01.009
Google Scholar
[11]
W.J. Lee, J.G. Chang, S.P. Ju, M.H. Weng and C.H. Lee, Structure-dependent mechanical properties of ultrathin zinc oxide nanowires, Nanoscale Research Letters. 6 (2011) 352-360.
DOI: 10.1186/1556-276x-6-352
Google Scholar
[12]
X.W. Sun, Y.D. Chu, T. Song, Z.J. Liu, L. Zhang, X.G. Wang, Y.X. Liu, and Q.F. Chen, Application of a shell model in molecular dynamics simulation to ZnO with zinc-blende cubic structure, Solid State Communications. 142 (2007) 15-19.
DOI: 10.1016/j.ssc.2007.01.035
Google Scholar
[13]
L. Dai, W.C. D. Cheong, C.H. Sow, C.T. Lim, and V.B.C. Tan, Molecular dynamics simulation of ZnO nanowires: size effects, defects, and super ductility, Langmuir. 26 (2011) 1165-1171.
DOI: 10.1021/la9022739
Google Scholar
[14]
X. Tang, First principle study on stability and electronic structure of doped ZnO, Dalian University of Technology (2008).
Google Scholar
[15]
Rigen HM. Mechanical properties in Zinc Oxide panowires: pxperimental and theoretical nanomechanics. Dissertation Submitted to Tsinghua University (2011).
Google Scholar